5,211 research outputs found

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Parameter estimation for macroscopic pedestrian dynamics models from microscopic data

    Get PDF
    In this paper we develop a framework for parameter estimation in macroscopic pedestrian models using individual trajectories -- microscopic data. We consider a unidirectional flow of pedestrians in a corridor and assume that the velocity decreases with the average density according to the fundamental diagram. Our model is formed from a coupling between a density dependent stochastic differential equation and a nonlinear partial differential equation for the density, and is hence of McKean--Vlasov type. We discuss identifiability of the parameters appearing in the fundamental diagram from trajectories of individuals, and we introduce optimization and Bayesian methods to perform the identification. We analyze the performance of the developed methodologies in various situations, such as for different in- and outflow conditions, for varying numbers of individual trajectories and for differing channel geometries

    Bayesian Inference for partially observed SDEs Driven by Fractional Brownian Motion

    Full text link
    We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a non-trivial likelihood given the latent path. Due to the non-Markovianity and high-dimensionality of the latent paths, estimating posterior expectations is a computationally challenging undertaking. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use this framework to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The Markov chain Monte Carlo algorithm is based on a version of hybrid Monte Carlo that delivers increased efficiency when applied on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model allowing for memory in the volatility increments through a fractional specification. The methodology is illustrated on simulated data and on the S&P500/VIX time series and is shown to be effective. Contrary to a long range dependence attribute of such models often assumed in the literature, with Hurst parameter larger than 1/2, the posterior distribution favours values smaller than 1/2, pointing towards medium range dependence

    An Optimal Control Derivation of Nonlinear Smoothing Equations

    Full text link
    The purpose of this paper is to review and highlight some connections between the problem of nonlinear smoothing and optimal control of the Liouville equation. The latter has been an active area of recent research interest owing to work in mean-field games and optimal transportation theory. The nonlinear smoothing problem is considered here for continuous-time Markov processes. The observation process is modeled as a nonlinear function of a hidden state with an additive Gaussian measurement noise. A variational formulation is described based upon the relative entropy formula introduced by Newton and Mitter. The resulting optimal control problem is formulated on the space of probability distributions. The Hamilton's equation of the optimal control are related to the Zakai equation of nonlinear smoothing via the log transformation. The overall procedure is shown to generalize the classical Mortensen's minimum energy estimator for the linear Gaussian problem.Comment: 7 pages, 0 figures, under peer reviewin

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers
    • …
    corecore