2 research outputs found

    Prior-enlightened and Motion-robust Video Deblurring

    Full text link
    Various blur distortions in video will cause negative impact on both human viewing and video-based applications, which makes motion-robust deblurring methods urgently needed. Most existing works have strong dataset dependency and limited generalization ability in handling challenging scenarios, like blur in low contrast or severe motion areas, and non-uniform blur. Therefore, we propose a PRiOr-enlightened and MOTION-robust video deblurring model (PROMOTION) suitable for challenging blurs. On the one hand, we use 3D group convolution to efficiently encode heterogeneous prior information, explicitly enhancing the scenes' perception while mitigating the output's artifacts. On the other hand, we design the priors representing blur distribution, to better handle non-uniform blur in spatio-temporal domain. Besides the classical camera shake caused global blurry, we also prove the generalization for the downstream task suffering from local blur. Extensive experiments demonstrate we can achieve the state-of-the-art performance on well-known REDS and GoPro datasets, and bring machine task gain.Comment: 26 pages, 13 figures, and 7 table

    Non-uniform Motion Deblurring with Blurry Component Divided Guidance

    Full text link
    Blind image deblurring is a fundamental and challenging computer vision problem, which aims to recover both the blur kernel and the latent sharp image from only a blurry observation. Despite the superiority of deep learning methods in image deblurring have displayed, there still exists major challenge with various non-uniform motion blur. Previous methods simply take all the image features as the input to the decoder, which handles different degrees (e.g. large blur, small blur) simultaneously, leading to challenges for sharp image generation. To tackle the above problems, we present a deep two-branch network to deal with blurry images via a component divided module, which divides an image into two components based on the representation of blurry degree. Specifically, two component attentive blocks are employed to learn attention maps to exploit useful deblurring feature representations on both large and small blurry regions. Then, the blur-aware features are fed into two-branch reconstruction decoders respectively. In addition, a new feature fusion mechanism, orientation-based feature fusion, is proposed to merge sharp features of the two branches. Both qualitative and quantitative experimental results show that our method performs favorably against the state-of-the-art approaches
    corecore