350 research outputs found
Analytical Modeling of Uplink Cellular Networks
Cellular uplink analysis has typically been undertaken by either a simple
approach that lumps all interference into a single deterministic or random
parameter in a Wyner-type model, or via complex system level simulations that
often do not provide insight into why various trends are observed. This paper
proposes a novel middle way using point processes that is both accurate and
also results in easy-to-evaluate integral expressions based on the Laplace
transform of the interference. We assume mobiles and base stations are randomly
placed in the network with each mobile pairing up to its closest base station.
Compared to related recent work on downlink analysis, the proposed uplink model
differs in two key features. First, dependence is considered between user and
base station point processes to make sure each base station serves a single
mobile in the given resource block. Second, per-mobile power control is
included, which further couples the transmission of mobiles due to
location-dependent channel inversion. Nevertheless, we succeed in deriving the
coverage (equivalently outage) probability of a typical link in the network.
This model can be used to address a wide variety of system design questions in
the future. In this paper we focus on the implications for power control and
see that partial channel inversion should be used at low
signal-to-interference-plus-noise ratio (SINR), while full power transmission
is optimal at higher SINR.Comment: to appear, IEEE Transactions on Wireless Communication
Optimize Power Allocation Scheme to Maximize Sum Rate in CoMP with Limited Channel State Information
Extensive use of mobile applications throws many challenges in cellular systems like cell edge
throughput, inter cell interference and spectral e�ciency. Many of these challenges have been
resolved using Coordinated Multi-Point (CoMP), developed in the Third Generation Partnership
Project for LTE-Advanced) to a great extent. CoMP cooperatively process signals from base sta-
tions that are connected to various multiple terminals (user equipment (UEs)) at transmission and
reception. This CoMP improves throughput, reduces or even removes inter-cell interference and
increases spectral e�ciency in the downlink of multi-antenna coordinated multipoint systems.
Many researchers addressed these issues assuming that BSs have the knowledge of the common
control channels dedicated to all UEs and also about the full or partial channel state information
(CSI) of all the links. From the CSI available at the BSs, multiuser interference can be managed
at the BSs. To make this feasible, UEs are responsible for collecting downlink CSI. But, CSI
measurement (instantaneous and/or statistical) is imperfect in nature because of the randomly
varying nature of the channels at random times. These incorrect CSI values available at the BSs
may, in turn, create multi-user interference. There are many techniques to suppress the multi-user
interference, among which the feedback scheme is the one which is gaining a lot of attention. In
feedback schemes, CSI information needs to be fed back to the base station from UEs in the uplink.
It is obvious, the question arises on the type and amount of feedback need to be used. Research
has been progressing in this front and some feedback techniques have been proposed. Three basic
CoMP Feedback schemes are available. Explicit or statistical channel information feedback scheme
in which channel information like channels's covariance matrix of the channel are shared between the
transmitter and receiver. Next, implicit or statistical channel information feedback which contains
information such as Channel quality indication or Precoding matrix indicator or Rank indicator. 1st
applied to TDD LTE type structure and 2nd of feedback scheme can be applied in the FDD system.
Finally, we have UE which tranmit the sounding reference signal (CSI). This type of feedback scheme
is applied to exploit channel reciprocity and to reduce channel intercell interference and this can be
applied in the TDD system. We have analyzed the scenario of LTE TDD based system. After this,
optimization of power is also required because users at the cell edge required more attention than
the user locating at the center of the cell. In my work, it shows estimated power gives exponential
divercity for high SNR as low SNR too.
In this method, a compression feedback method is analyzed to provide multi-cell spatial channel
information. It improves the feedback e�ciency and throughput. The rows and columns of the
channel matrix are compressed using Eigenmode of the user and codebook based scheme speci�ed
in LTE speci�cation. The main drawback of this scheme is that spectral e�ciency is achieved with
the cost of increased overheads for feedback and evolved NodeB (eNB). Other factor is complexity
of eNodeB which is to be addressed in future work
Achieving "Massive MIMO" Spectral Efficiency with a Not-so-Large Number of Antennas
The main focus and contribution of this paper is a novel network-MIMO TDD
architecture that achieves spectral efficiencies comparable with "Massive
MIMO", with one order of magnitude fewer antennas per active user per cell. The
proposed architecture is based on a family of network-MIMO schemes defined by
small clusters of cooperating base stations, zero-forcing multiuser MIMO
precoding with suitable inter-cluster interference constraints, uplink pilot
signals reuse across cells, and frequency reuse. The key idea consists of
partitioning the users population into geographically determined "bins", such
that all users in the same bin are statistically equivalent, and use the
optimal network-MIMO architecture in the family for each bin. A scheduler takes
care of serving the different bins on the time-frequency slots, in order to
maximize a desired network utility function that captures some desired notion
of fairness. This results in a mixed-mode network-MIMO architecture, where
different schemes, each of which is optimized for the served user bin, are
multiplexed in time-frequency. In order to carry out the performance analysis
and the optimization of the proposed architecture in a clean and
computationally efficient way, we consider the large-system regime where the
number of users, the number of antennas, and the channel coherence block length
go to infinity with fixed ratios. The performance predicted by the large-system
asymptotic analysis matches very well the finite-dimensional simulations.
Overall, the system spectral efficiency obtained by the proposed architecture
is similar to that achieved by "Massive MIMO", with a 10-fold reduction in the
number of antennas at the base stations (roughly, from 500 to 50 antennas).Comment: Full version with appendice (proofs of theorems). A shortened version
without appendice was submitted to IEEE Trans. on Wireless Commun. Appendix B
was revised after submissio
- …
