3 research outputs found

    Joint Training Capsule Network for Cold Start Recommendation

    Full text link
    This paper proposes a novel neural network, joint training capsule network (JTCN), for the cold start recommendation task. We propose to mimic the high-level user preference other than the raw interaction history based on the side information for the fresh users. Specifically, an attentive capsule layer is proposed to aggregate high-level user preference from the low-level interaction history via a dynamic routing-by-agreement mechanism. Moreover, JTCN jointly trains the loss for mimicking the user preference and the softmax loss for the recommendation together in an end-to-end manner. Experiments on two publicly available datasets demonstrate the effectiveness of the proposed model. JTCN improves other state-of-the-art methods at least 7.07% for CiteULike and 16.85% for Amazon in terms of Recall@100 in cold start recommendation.Comment: Accepted by SIGIR'2

    ColdGAN: Resolving Cold Start User Recommendation by using Generative Adversarial Networks

    Full text link
    Mitigating the new user cold-start problem has been critical in the recommendation system for online service providers to influence user experience in decision making which can ultimately affect the intention of users to use a particular service. Previous studies leveraged various side information from users and items; however, it may be impractical due to privacy concerns. In this paper, we present ColdGAN, an end-to-end GAN based model with no use of side information to resolve this problem. The main idea of the proposed model is to train a network that learns the rating distributions of experienced users given their cold-start distributions. We further design a time-based function to restore the preferences of users to cold-start states. With extensive experiments on two real-world datasets, the results show that our proposed method achieves significantly improved performance compared with the state-of-the-art recommenders

    A Model of Two Tales: Dual Transfer Learning Framework for Improved Long-tail Item Recommendation

    Full text link
    Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.Comment: Accepted by WWW 2021 as a long pape
    corecore