67 research outputs found

    Speaker diarization assisted ASR for multi-speaker conversations

    Full text link
    In this paper, we propose a novel approach for the transcription of speech conversations with natural speaker overlap, from single channel recordings. We propose a combination of a speaker diarization system and a hybrid automatic speech recognition (ASR) system with speaker activity assisted acoustic model (AM). An end-to-end neural network system is used for speaker diarization. Two architectures, (i) input conditioned AM, and (ii) gated features AM, are explored to incorporate the speaker activity information. The models output speaker specific senones. The experiments on Switchboard telephone conversations show the advantage of incorporating speaker activity information in the ASR system for recordings with overlapped speech. In particular, an absolute improvement of 11%11\% in word error rate (WER) is seen for the proposed approach on natural conversation speech with automatic diarization.Comment: Manuscript submitted to INTERSPEECH 202

    Enhancing Speaker Diarization with Large Language Models: A Contextual Beam Search Approach

    Full text link
    Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues.Comment: 4 pages 1 reference page, ICASSP forma

    End-to-end speech recognition modeling from de-identified data

    Full text link
    De-identification of data used for automatic speech recognition modeling is a critical component in protecting privacy, especially in the medical domain. However, simply removing all personally identifiable information (PII) from end-to-end model training data leads to a significant performance degradation in particular for the recognition of names, dates, locations, and words from similar categories. We propose and evaluate a two-step method for partially recovering this loss. First, PII is identified, and each occurrence is replaced with a random word sequence of the same category. Then, corresponding audio is produced via text-to-speech or by splicing together matching audio fragments extracted from the corpus. These artificial audio/label pairs, together with speaker turns from the original data without PII, are used to train models. We evaluate the performance of this method on in-house data of medical conversations and observe a recovery of almost the entire performance degradation in the general word error rate while still maintaining a strong diarization performance. Our main focus is the improvement of recall and precision in the recognition of PII-related words. Depending on the PII category, between 50%−90%50\% - 90\% of the performance degradation can be recovered using our proposed method.Comment: Accepted to INTERSPEECH 202

    Lexical Speaker Error Correction: Leveraging Language Models for Speaker Diarization Error Correction

    Full text link
    Speaker diarization (SD) is typically used with an automatic speech recognition (ASR) system to ascribe speaker labels to recognized words. The conventional approach reconciles outputs from independently optimized ASR and SD systems, where the SD system typically uses only acoustic information to identify the speakers in the audio stream. This approach can lead to speaker errors especially around speaker turns and regions of speaker overlap. In this paper, we propose a novel second-pass speaker error correction system using lexical information, leveraging the power of modern language models (LMs). Our experiments across multiple telephony datasets show that our approach is both effective and robust. Training and tuning only on the Fisher dataset, this error correction approach leads to relative word-level diarization error rate (WDER) reductions of 15-30% on three telephony datasets: RT03-CTS, Callhome American English and held-out portions of Fisher.Comment: Accepted at INTERSPEECH 202

    Language modelling for speaker diarization in telephonic interviews

    Get PDF
    The aim of this paper is to investigate the benefit of combining both language and acoustic modelling for speaker diarization. Although conventional systems only use acoustic features, in some scenarios linguistic data contain high discriminative speaker information, even more reliable than the acoustic ones. In this study we analyze how an appropriate fusion of both kind of features is able to obtain good results in these cases. The proposed system is based on an iterative algorithm where a LSTM network is used as a speaker classifier. The network is fed with character-level word embeddings and a GMM based acoustic score created with the output labels from previous iterations. The presented algorithm has been evaluated in a Call-Center database, which is composed of telephone interview audios. The combination of acoustic features and linguistic content shows a 84.29% improvement in terms of a word-level DER as compared to a HMM/VB baseline system. The results of this study confirms that linguistic content can be efficiently used for some speaker recognition tasks.This work was partially supported by the Spanish Project DeepVoice (TEC2015-69266-P) and by the project PID2019-107579RBI00/ AEI /10.13039/501100011033.Peer ReviewedPostprint (published version

    Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings

    Full text link
    This paper presents a streaming speaker-attributed automatic speech recognition (SA-ASR) model that can recognize "who spoke what" with low latency even when multiple people are speaking simultaneously. Our model is based on token-level serialized output training (t-SOT) which was recently proposed to transcribe multi-talker speech in a streaming fashion. To further recognize speaker identities, we propose an encoder-decoder based speaker embedding extractor that can estimate a speaker representation for each recognized token not only from non-overlapping speech but also from overlapping speech. The proposed speaker embedding, named t-vector, is extracted synchronously with the t-SOT ASR model, enabling joint execution of speaker identification (SID) or speaker diarization (SD) with the multi-talker transcription with low latency. We evaluate the proposed model for a joint task of ASR and SID/SD by using LibriSpeechMix and LibriCSS corpora. The proposed model achieves substantially better accuracy than a prior streaming model and shows comparable or sometimes even superior results to the state-of-the-art offline SA-ASR model.Comment: Submitted to Interspeech 202
    • …
    corecore