7,814 research outputs found

    Multiple symbol decoding of differential space-time codes

    Get PDF
    Multiple-symbol detection of space-time differential codes (MS-STDC) decodes N consecutive space-time symbols using maximum likelihood (ML) sequence detection to gain in performance over the conventional differential detection scheme. However its computational complexity is exponential in N . A fast algorithm for implementing the MD-STDC in block-fading channels with complexity O(N 4) is developed. Its performance in both block-fading and symbol-by-symbol fading channels is demonstrated through simulations. Set partitioning in hierarchical trees (SPIHT) coupled with rate compatible punctured convolution code (RCPC) and cyclic redundancy check (CRC) is employed as a generalized multiple description source coder with robustness to channel errors. We propose a serial concatenation of the above with a differential space-time code (STDC) and invoke an iterative joint source channel decoding procedure for decoding differentially space-time coded multiple descriptions. Experiments show a gain of up to 5 dB in PSNR with four iterations for image transmission in the absence of channel state information (CSI) at the receiver. A serial concatenation of SPIHT + RCPC/CRC is also considered with space-time codes (STC) instead of STDC. Experiments show a gain of up to 7 dB with four iterations in the absence of CS

    Lattice-Based Precoding And Decoding in MIMO Fading Systems

    Get PDF
    In this thesis, different aspects of lattice-based precoding and decoding for the transmission of digital and analog data over MIMO fading channels are investigated: 1) Lattice-based precoding in MIMO broadcast systems: A new viewpoint for adopting the lattice reduction in communication over MIMO broadcast channels is introduced. Lattice basis reduction helps us to reduce the average transmitted energy by modifying the region which includes the constellation points. The new viewpoint helps us to generalize the idea of lattice-reduction-aided precoding for the case of unequal-rate transmission, and obtain analytic results for the asymptotic behavior of the symbol-error-rate for the lattice-reduction-aided precoding and the perturbation technique. Also, the outage probability for both cases of fixed-rate users and fixed sum-rate is analyzed. It is shown that the lattice-reduction-aided method, using LLL algorithm, achieves the optimum asymptotic slope of symbol-error-rate (called the precoding diversity). 2) Lattice-based decoding in MIMO multiaccess systems and MIMO point-to-point systems: Diversity order and diversity-multiplexing tradeoff are two important measures for the performance of communication systems over MIMO fading channels. For the case of MIMO multiaccess systems (with single-antenna transmitters) or MIMO point-to-point systems with V-BLAST transmission scheme, it is proved that lattice-reduction-aided decoding achieves the maximum receive diversity (which is equal to the number of receive antennas). Also, it is proved that the naive lattice decoding (which discards the out-of-region decoded points) achieves the maximum diversity in V-BLAST systems. On the other hand, the inherent drawbacks of the naive lattice decoding for general MIMO fading systems is investigated. It is shown that using the naive lattice decoding for MIMO systems has considerable deficiencies in terms of the diversity-multiplexing tradeoff. Unlike the case of maximum-likelihood decoding, in this case, even the perfect lattice space-time codes which have the non-vanishing determinant property can not achieve the optimal diversity-multiplexing tradeoff. 3) Lattice-based analog transmission over MIMO fading channels: The problem of finding a delay-limited schemes for sending an analog source over MIMO fading channels is investigated in this part. First, the problem of robust joint source-channel coding over an additive white Gaussian noise channel is investigated. A new scheme is proposed which achieves the optimal slope for the signal-to-distortion-ratio (SDR) curve (unlike the previous known coding schemes). Then, this idea is extended to MIMO channels to construct lattice-based codes for joint source-channel coding over MIMO channels. Also, similar to the diversity-multiplexing tradeoff, the asymptotic performance of MIMO joint source-channel coding schemes is characterized, and a concept called diversity-fidelity tradeoff is introduced in this thesis

    Jointly optimised iterative source-coding, channel-coding and modulation for transmission over wireless channels

    No full text
    Joint source-coding, channel-coding and modulation schemes based on Variable Length Codes (VLCs), Trellis Coded Modulation (TCM), Turbo TCM (TTCM), Bit-Interleaved Coded Modulation (BICM) and iteratively decoded BICM (BICM-ID) schemes are proposed. A significant coding gain is achieved without bandwidth expansion, when exchanging information between the VLC and the coded modulation decoders with the advent of iterative decoding. With the aid of using independent interleavers for the In-phase and Quadrature phase components of the complex-valued constellation, further diversity gain may be achieved. The performance of the proposed schemes is evaluated over both AWGN and Rayleigh fading channels. Explicitly, at BER = 10-5 most of the proposed schemes have BER curves less than one-dB away from the channel capacity limit

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Iterative Detection of Diagonal Block Space Time Trellis Codes, TCM and Reversible Variable Length Codes for Transmission over Rayleigh Fading Channels

    No full text
    Iterative detection of Diagonal Block Space Time Trellis Codes (DBSTTCs), Trellis Coded Modulation (TCM) and Reversible Variable Length Codes (RVLCs) is proposed. With the aid of efficient iterative decoding, the proposed scheme is capable of providing full transmit diversity and a near channel capacity performance. The performance of the proposed scheme was evaluated when communicating over uncorrelated Rayleigh fading channels. Explicitly, significant iteration gains were achieved by the proposed scheme, which was capable of performing within 2~dB from the channel capacity

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Turbo-detected unequal protection audio and speech transceivers using serially concatenated convolutional codes, trellis coded modulation and space-time trellis coding

    No full text
    The MPEG-4 TwinVQ audio codec and the AMR-WB speech codec are investigated in the context of a jointly optimised turbo transceiver capable of providing unequal error protection. The transceiver advocated consists of serially concatenated Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error protection. A benchmarker scheme combining STTC and a single-class protection NSC is used for comparison with the proposed scheme. The audio and speech performance of both schemes is evaluated, when communicating over uncorrelated Rayleigh fading channels. An Eb/N0E_b/N_0 value of about 2.5 (3.5)~dB is required for near-unimpaired audio (speech) transmission, which is about 3.07 (4.2)~dB from the capacity of the system
    corecore