20,048 research outputs found

    Cross-layer Congestion Control, Routing and Scheduling Design in Ad Hoc Wireless Networks

    Get PDF
    This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints. By dual decomposition, the resource allocation problem naturally decomposes into three subproblems: congestion control, routing and scheduling that interact through congestion price. The global convergence property of this algorithm is proved. We next extend the dual algorithm to handle networks with timevarying channels and adaptive multi-rate devices. The stability of the resulting system is established, and its performance is characterized with respect to an ideal reference system which has the best feasible rate region at link layer. We then generalize the aforementioned results to a general model of queueing network served by a set of interdependent parallel servers with time-varying service capabilities, which models many design problems in communication networks. We show that for a general convex optimization problem where a subset of variables lie in a polytope and the rest in a convex set, the dual-based algorithm remains stable and optimal when the constraint set is modulated by an irreducible finite-state Markov chain. This paper thus presents a step toward a systematic way to carry out cross-layer design in the framework of “layering as optimization decomposition” for time-varying channel models

    On distributed scheduling in wireless networks exploiting broadcast and network coding

    Get PDF
    In this paper, we consider cross-layer optimization in wireless networks with wireless broadcast advantage, focusing on the problem of distributed scheduling of broadcast links. The wireless broadcast advantage is most useful in multicast scenarios. As such, we include network coding in our design to exploit the throughput gain brought in by network coding for multicasting. We derive a subgradient algorithm for joint rate control, network coding and scheduling, which however requires centralized link scheduling. Under the primary interference model, link scheduling problem is equivalent to a maximum weighted hypergraph matching problem that is NP-complete. To solve the scheduling problem distributedly, locally greedy and randomized approximation algorithms are proposed and shown to have bounded worst-case performance. With random network coding, we obtain a fully distributed cross-layer design. Numerical results show promising throughput gain using the proposed algorithms, and surprisingly, in some cases even with less complexity than cross-layer design without broadcast advantage

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Code-rate-optimized differentially modulated near-capacity cooperation

    No full text
    It is widely recognized that half-duplex-relay-aided differential decode-and-forward (DDF) cooperative transmission schemes are capable of achieving a cooperative diversity gain, while circumventing the potentially excessive-complexity and yet inaccurate channel estimation, especially in mobile environments. However, when a cooperative wireless communication system is designed to approach the maximum achievable spectral efficiency by taking the cooperation-induced multiplexing loss into account, it is not obvious whether or not the relay-aided system becomes superior to its direct-transmission based counterpart, especially, when advanced channel coding techniques are employed. Furthermore, the optimization of the transmit-interval durations required by the source and relay is an open issue, which has not been well understood in the context of half-duplex relaying schemes. Hence, we first find the optimum transmission duration, which is proportional to the adaptive channel-code rate of the source and relay in the context of Code-Rate-Optimized (CRO) TDMA-based DDF-aided half-duplex systems for the sake of maximizing the achievable network throughput. Then, we investigate the benefits of introducing cooperative mechanisms into wireless networks, which may be approached in the context of the proposed CRO cooperative system both from a pure capacity perspective and from the practical perspective of approaching the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity with the aid of the proposed Irregular Distributed Differential (IrDD) coding aided scheme. In order to achieve a near-capacity performance at a low-complexity, an adaptive-window-duration based Multiple-Symbol Differential Sphere Detection (MSDSD) scheme is employed in the iterative detection aided receiver. Specifically, upon using the proposed near-capacity system design, the IrDD coding scheme devised becomes capable of performing within about 1.8 dB from the corresponding single-relay-aided DDF cooperative system’s DCMC capacity

    CORELA: a cooperative relaying enhanced link adaptation algorithm for IEEE 802.11 WLANs

    Get PDF
    corecore