51 research outputs found

    Joint Resource Partitioning and Offloading in Heterogeneous Cellular Networks

    Full text link
    In heterogeneous cellular networks (HCNs), it is desirable to offload mobile users to small cells, which are typically significantly less congested than the macrocells. To achieve sufficient load balancing, the offloaded users often have much lower SINR than they would on the macrocell. This SINR degradation can be partially alleviated through interference avoidance, for example time or frequency resource partitioning, whereby the macrocell turns off in some fraction of such resources. Naturally, the optimal offloading strategy is tightly coupled with resource partitioning; the optimal amount of which in turn depends on how many users have been offloaded. In this paper, we propose a general and tractable framework for modeling and analyzing joint resource partitioning and offloading in a two-tier cellular network. With it, we are able to derive the downlink rate distribution over the entire network, and an optimal strategy for joint resource partitioning and offloading. We show that load balancing, by itself, is insufficient, and resource partitioning is required in conjunction with offloading to improve the rate of cell edge users in co-channel heterogeneous networks

    On Association Cells in Random Heterogeneous Networks

    Full text link
    Characterizing user to access point (AP) association strategies in heterogeneous cellular networks (HetNets) is critical for their performance analysis, as it directly influences the load across the network. In this letter, we introduce and analyze a class of association strategies, which we term stationary association, and the resulting association cells. For random HetNets, where APs are distributed according to a stationary point process, the area of the resulting association cells are shown to be the marks of the corresponding point process. Addressing the need of quantifying the load experienced by a typical user, a "Feller-paradox" like relationship is established between the area of the association cell containing origin and that of a typical association cell. For the specific case of Poisson point process and max power/SINR association, the mean association area of each tier is derived and shown to increase with channel gain variance and decrease in the path loss exponents of the corresponding tier

    Analysis and Optimization of Cellular Network with Burst Traffic

    Full text link
    In this paper, we analyze the performance of cellular networks and study the optimal base station (BS) density to reduce the network power consumption. In contrast to previous works with similar purpose, we consider Poisson traffic for users' traffic model. In such situation, each BS can be viewed as M/G/1 queuing model. Based on theory of stochastic geometry, we analyze users' signal-to-interference-plus-noise-ratio (SINR) and obtain the average transmission time of each packet. While most of the previous works on SINR analysis in academia considered full buffer traffic, our analysis provides a basic framework to estimate the performance of cellular networks with burst traffic. We find that the users' SINR depends on the average transmission probability of BSs, which is defined by a nonlinear equation. As it is difficult to obtain the closed-form solution, we solve this nonlinear equation by bisection method. Besides, we formulate the optimization problem to minimize the area power consumption. An iteration algorithm is proposed to derive the local optimal BS density, and the numerical result shows that the proposed algorithm can converge to the global optimal BS density. At the end, the impact of BS density on users' SINR and average packet delay will be discussed.Comment: This paper has been withdrawn by the author due to missuse of queue model in Section Fou
    • …
    corecore