2,897 research outputs found

    Towards Effective Low-bitwidth Convolutional Neural Networks

    Full text link
    This paper tackles the problem of training a deep convolutional neural network with both low-precision weights and low-bitwidth activations. Optimizing a low-precision network is very challenging since the training process can easily get trapped in a poor local minima, which results in substantial accuracy loss. To mitigate this problem, we propose three simple-yet-effective approaches to improve the network training. First, we propose to use a two-stage optimization strategy to progressively find good local minima. Specifically, we propose to first optimize a net with quantized weights and then quantized activations. This is in contrast to the traditional methods which optimize them simultaneously. Second, following a similar spirit of the first method, we propose another progressive optimization approach which progressively decreases the bit-width from high-precision to low-precision during the course of training. Third, we adopt a novel learning scheme to jointly train a full-precision model alongside the low-precision one. By doing so, the full-precision model provides hints to guide the low-precision model training. Extensive experiments on various datasets ( i.e., CIFAR-100 and ImageNet) show the effectiveness of the proposed methods. To highlight, using our methods to train a 4-bit precision network leads to no performance decrease in comparison with its full-precision counterpart with standard network architectures ( i.e., AlexNet and ResNet-50).Comment: 11 page

    Domain-adaptive deep network compression

    Full text link
    Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer. We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing. We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone -- with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.Comment: Accepted at ICCV 201
    • …
    corecore