781 research outputs found

    Provision of Flexibility Services by Industrial Energy Systems

    Get PDF

    Power System Simulation, Control and Optimization

    Get PDF
    This Special Issue “Power System Simulation, Control and Optimization” offers valuable insights into the most recent research developments in these topics. The analysis, operation, and control of power systems are increasingly complex tasks that require advanced simulation models to analyze and control the effects of transformations concerning electricity grids today: Massive integration of renewable energies, progressive implementation of electric vehicles, development of intelligent networks, and progressive evolution of the applications of artificial intelligence

    Energy Management Systems For Smart Active Residential Buildings

    Get PDF

    Wind Energy Management

    Get PDF
    The book "Wind Energy Management" is a required part of pursuing research work in the field of Renewable Energy at most universities. It provides in-depth knowledge to the subject for the beginners and stimulates further interest in the topic. The salient features of this book include: - Strong coverage of key topics - User friendly and accessible presentation to make learning interesting as much as possible - Its approach is explanatory and language is lucid and communicable - Recent research papers are incorporate

    A Framework for Flexible Loads Aggregation

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Improving data center efficiency through smart grid integration and intelligent analytics

    Full text link
    The ever-increasing growth of the demand in IT computing, storage and large-scale cloud services leads to the proliferation of data centers that consist of (tens of) thousands of servers. As a result, data centers are now among the largest electricity consumers worldwide. Data center energy and resource efficiency has started to receive significant attention due to its economical, environmental, and performance impacts. In tandem, facing increasing challenges in stabilizing the power grids due to growing needs of intermittent renewable energy integration, power market operators have started to offer a number of demand response (DR) opportunities for energy consumers (such as data centers) to receive credits by modulating their power consumption dynamically following specific requirements. This dissertation claims that data centers have strong capabilities to emerge as major enablers of substantial electricity integration from renewables. The participation of data centers into emerging DR, such as regulation service reserves (RSRs), enables the growth of the data center in a sustainable, environmentally neutral, or even beneficial way, while also significantly reducing data center electricity costs. In this dissertation, we first model data center participation in DR, and then propose runtime policies to dynamically modulate data center power in response to independent system operator (ISO) requests, leveraging advanced server power and workload management techniques. We also propose energy and reserve bidding strategies to minimize the data center energy cost. Our results demonstrate that a typical data center can achieve up to 44% monetary savings in its electricity cost with RSR provision, dramatically surpassing savings achieved by traditional energy management strategies. In addition, we investigate the capabilities and benefits of various types of energy storage devices (ESDs) in DR. Finally, we demonstrate RSR provision in practice on a real server. In addition to its contributions on improving data center energy efficiency, this dissertation also proposes a novel method to address data center management efficiency. We propose an intelligent system analytics approach, "discovery by example", which leverages fingerprinting and machine learning methods to automatically discover software and system changes. Our approach eases runtime data center introspection and reduces the cost of system management.2018-11-04T00:00:00

    Decision-making under uncertainty in short-term electricity markets

    Get PDF
    In the course of the energy transition, the share of electricity generation from renewable energy sources in Germany has increased significantly in recent years and will continue to rise. Particularly fluctuating renewables like wind and solar bring more uncertainty and volatility to the electricity system. As markets determine the unit commitment in systems with self-dispatch, many changes have been made to the design of electricity markets to meet the new challenges. Thereby, a trend towards real-time can be observed. Short-term electricity markets are becoming more important and are seen as suitable for efficient resource allocation. Therefore, it is inevitable for market participants to develop strategies for trading electricity and flexibility in these segments. The research conducted in this thesis aims to enable better decisions in short-term electricity markets. To achieve this, a multitude of quantitative methods is developed and applied: (a) forecasting methods based on econometrics and machine learning, (b) methods for stochastic modeling of time series, (c) scenario generation and reduction methods, as well as (d) stochastic programming methods. Most significantly, two- and three-stage stochastic optimization problems are formulated to derive optimal trading decisions and unit commitment in the context of short-term electricity markets. The problem formulations adequately account for the sequential structure, the characteristics and the technical requirements of the different market segments, as well as the available information regarding uncertain generation volumes and prices. The thesis contains three case studies focusing on the German electricity markets. Results confirm that, based on appropriate representations of the uncertainty of market prices and renewable generation, the optimization approaches allow to derive sound trading strategies across multiple revenue streams, with which market participants can effectively balance the inevitable trade-off between expected profit and associated risk. By considering coherent risk metrics and flexibly adaptable risk attitudes, the trading strategies allow to substantially reduce risk with only moderate expected profit losses. These results are significant, as improving trading decisions that determine the allocation of resources in the electricity system plays a key role in coping with the uncertainty from renewables and hence contributes to the ultimate success of the energy transition

    Komponentenbasierte dynamische Modellierung von Energiesystemen und Energiemanagement-Strategien fĂĽr ein intelligentes Stromnetz im Heimbereich

    Get PDF
    The motivation of this work is to present an energy cost reduction concept in a home area power network (HAPN) with intelligent generation and flexible load demands. This study endeavors to address the energy management system (EMS) and layout-design challenges faced by HAPN through a systematic design approach. The growing demand for electricity has become a significant burden on traditional power networks, prompting power engineers to seek ways to improve their efficiency. One such solution is to integrate dispersed generation sources, such as photovoltaic (PV) and storage systems, with an appropriate control mechanism at the distribution level. In recent years, there has been a significant increase in interest in the installation of PV-Battery systems, due to their potential to reduce carbon emissions and lower energy costs. This research proposes an optimal economic power dispatch strategy using Model Predictive Control (MPC) to enhance the overall performance of HAPN. A hybrid AC/DC microgrid concept is proposed to address the control choices made by the appliance scheduling and hybrid switching approaches based on a linear programming optimization framework. The suggested optimization criteria improve consumer satisfaction, minimize grid disconnections, and lower overall energy costs by deploying inexpensive clean energy generation and control. Various examples from actual case study demonstrate the use of the established EMS and design methodology.Die Motivation dieser Arbeit besteht darin, ein Konzept zur Senkung der Energiekosten in einem Heimnetzwerk (HAPN) mit intelligenter Erzeugung und exiblen Lastanforderungen vorzustellen. Im Rahmen dieser Forschungsarbeit wird ein Entwurf für ein HAPN entwickelt, indem das Energiemanagementsystem (EMS) und der Entwurf des Layouts auf der Grundlage des Systemmodells und der betrieblichen Anforderungen gelöst werden. Die steigende Nachfrage nach Elektrizität ist für traditionelle Stromnetze kostspielig und infrastrukturintensiv. Daher konzentrieren sich Energietechniker darauf, die Effizienz der derzeitigen Netze zu erhöhen. Dies kann durch die Integration verteilter Erzeugungsanlagen (z. B. Photovoltaik (PV), Speicher) mit einem geeigneten Kontrollmechanismus für das Energiemanagement auf der Verteilungsseite erreicht werden. Darüber hinaus hat das Interesse an der Installation von PV-Batterie-basierten Systemen aufgrund der Reduzierung der CO2-Emissionen und der Senkung der Energiekosten erheblich zugenommen. Es wird eine optimale wirtschaftliche Strategie für den Energieeinsatz unter Verwendung einer modellprädiktiven Steuerung (MPC) entwickelt. Es wird zudem ein hybrides AC/DC-Microgrid-Konzept vorgeschlagen, um die Steuerungsentscheidungen, die von den Ansätzen der Geräteplanung und der hybriden Umschaltung getroffen werden, auf der Grundlage eines linearen Programmierungsoptimierungsrahmens zu berücksichtigen. Die vorgeschlagenen Optimierungskriterien verbessern die Zufriedenheit der Verbraucher, minimieren Netzabschaltungen und senken die Gesamtenergiekosten durch den Einsatz von kostengünstiger und sauberer Energieerzeugung. Verschiedene Beispiele aus einer Fallstudie demonstrieren den Einsatz des entwickelten EMS und der Entwurfsmethodik

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Smart Energy Management for Smart Grids

    Get PDF
    This book is a contribution from the authors, to share solutions for a better and sustainable power grid. Renewable energy, smart grid security and smart energy management are the main topics discussed in this book
    • …
    corecore