4 research outputs found

    Joint MIMO radar waveform and receiving filter optimization

    Get PDF
    The concept of MIMO (multiple-input multipleoutput) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar when the prior information of target and clutter are available. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The proposed algorithm guarantees that the SINR performance improves in each iteration step. The numerical results show that the proposed methods have better SINR performances than existing design method

    MIMO Radar Waveform Optimization With Prior Information of the Extended Target and Clutter

    Get PDF
    The concept of multiple-input multiple-output (MIMO) radar allows each transmitting antenna element to transmit an arbitrary waveform. This provides extra degrees of freedom compared to the traditional transmit beamforming approach. It has been shown in the recent literature that MIMO radar systems have many advantages. In this paper, we consider the joint optimization of waveforms and receiving filters in the MIMO radar for the case of extended target in clutter. A novel iterative algorithm is proposed to optimize the waveforms and receiving filters such that the detection performance can be maximized. The corresponding iterative algorithms are also developed for the case where only the statistics or the uncertainty set of the target impulse response is available. These algorithms guarantee that the SINR performance improves in each iteration step. Numerical results show that the proposed methods have better SINR performance than existing design methods

    Multiple-input Multiple-output Radar Waveform Design Methodologies

    Get PDF
    Multiple-input multiple-output (MIMO) radar is currently an active area of research. The MIMO techniques have been well studied for communications applications where they offer benefits in multipath fading environments. Partly inspired by these benefits, MIMO techniques are applied to radar and they offer a number of advantages such as improved resolution and sensitivity. It allows the use of transmitting multiple simultaneous waveforms from different phase centers. The employed radar waveform plays a key role in determining the accuracy, resolution, and ambiguity in performing tasks such as determining the target range, velocity, shape, and so on. The excellent performance promised by MIMO radar can be unleashed only by proper waveform design. In this article, a survey on MIMO radar waveform design is presented. The goal of this paper is to elucidate the key concepts of waveform design to encourage further research on this emerging technology.Defence Science Journal, 2013, 63(4), pp.393-401, DOI:http://dx.doi.org/10.14429/dsj.63.253
    corecore