883 research outputs found

    Joint Learning of Word and Label Embeddings for Sequence Labelling in Spoken Language Understanding

    Full text link
    We propose an architecture to jointly learn word and label embeddings for slot filling in spoken language understanding. The proposed approach encodes labels using a combination of word embeddings and straightforward word-label association from the training data. Compared to the state-of-the-art methods, our approach does not require label embeddings as part of the input and therefore lends itself nicely to a wide range of model architectures. In addition, our architecture computes contextual distances between words and labels to avoid adding contextual windows, thus reducing memory footprint. We validate the approach on established spoken dialogue datasets and show that it can achieve state-of-the-art performance with much fewer trainable parameters.Comment: Accepted for publication at ASRU 201

    Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

    Full text link
    State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.Comment: 4 pages + 1 reference
    • …
    corecore