280 research outputs found

    Joint Iterative Power Allocation and Linear Interference Suppression Algorithms in Cooperative DS-CDMA Networks

    Full text link
    This work presents joint iterative power allocation and interference suppression algorithms for spread spectrum networks which employ multiple hops and the amplify-and-forward cooperation strategy for both the uplink and the downlink. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to individual and global power constraints and the design of linear receivers for interference suppression. We derive constrained linear minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problems, we develop cost-effective algorithms for adaptive joint power allocation, and estimation of the parameters of the receiver and the channels. An analysis of the optimization problem is carried out and shows that the problem can have its convexity enforced by an appropriate choice of the power constraint parameter, which allows the algorithms to avoid problems with local minima. A study of the complexity and the requirements for feedback channels of the proposed algorithms is also included for completeness. Simulation results show that the proposed algorithms obtain significant gains in performance and capacity over existing non-cooperative and cooperative schemes.Comment: 9 figures; IET Communications, 201

    Resource Allocation and Interference Mitigation Techniques for Cooperative Multi-Antenna and Spread Spectrum Wireless Networks

    Full text link
    This chapter presents joint interference suppression and power allocation algorithms for DS-CDMA and MIMO networks with multiple hops and amplify-and-forward and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays and linear interference suppression is proposed. We also consider another strategy for joint interference suppression and relay selection that maximizes the diversity available in the system. Simulations show that the proposed cross-layer optimization algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 10 figures. arXiv admin note: substantial text overlap with arXiv:1301.009

    Interference Suppression and Group-Based Power Adjustment via Alternating Optimization for DS-CDMA Networks with Multihop Relaying

    Full text link
    This work presents joint interference suppression and power allocation algorithms for DS-CDMA networks with multiple hops and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays subject to group-based power constraints and the design of linear receivers for interference suppression is proposed. A constrained minimum mean-squared error (MMSE) design for the receive filters and the power allocation vectors is devised along with an MMSE channel estimator. In order to solve the proposed optimization efficiently, a method to form an effective group of users and an alternating optimization strategy are devised with recursive alternating least squares (RALS) algorithms for estimating the parameters of the receiver, the power allocation and the channels. Simulations show that the proposed algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 2 figures. arXiv admin note: substantial text overlap with arXiv:1301.5912, arXiv:1301.009

    Joint Power Adjustment and Interference Mitigation Techniques for Cooperative Spread Spectrum Systems

    Full text link
    This paper presents joint power allocation and interference mitigation techniques for the downlink of spread spectrum systems which employ multiple relays and the amplify and forward cooperation strategy. We propose a joint constrained optimization framework that considers the allocation of power levels across the relays subject to an individual power constraint and the design of linear receivers for interference suppression. We derive constrained minimum mean-squared error (MMSE) expressions for the parameter vectors that determine the optimal power levels across the relays and the linear receivers. In order to solve the proposed optimization problem efficiently, we develop joint adaptive power allocation and interference suppression algorithms that can be implemented in a distributed fashion. The proposed stochastic gradient (SG) and recursive least squares (RLS) algorithms mitigate the interference by adjusting the power levels across the relays and estimating the parameters of the linear receiver. SG and RLS channel estimation algorithms are also derived to determine the coefficients of the channels across the base station, the relays and the destination terminal. The results of simulations show that the proposed techniques obtain significant gains in performance and capacity over non-cooperative systems and cooperative schemes with equal power allocation.Comment: 6 figures. arXiv admin note: text overlap with arXiv:1301.009

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Joint SIC and Relay Selection for Cooperative DS-CDMA Systems

    Full text link
    In this work, we propose a cross-layer design strategy based on a joint successive interference cancellation (SIC) detection technique and a multi-relay selection algorithm for the uplink of cooperative direct-sequence code-division multiple access (DS-CDMA) systems. We devise a low-cost greedy list-based SIC (GL-SIC) strategy with RAKE receivers as the front-end that can approach the maximum likelihood detector performance. %Unlike prior art, the proposed GL-SIC algorithm %exploits the Euclidean distance between users of interest, multiple %ordering and their constellation points to build an effective list %of detection candidates. We also present a low-complexity multi-relay selection algorithm based on greedy techniques that can approach the performance of an exhaustive search. %A cross-layer %design strategy that brings together the proposed GL-SIC algorithm %and the greedy relay selection is then developed. Simulations show an excellent bit error rate performance of the proposed detection and relay selection algorithms as compared to existing techniques.Comment: 5 figures, conferenc

    Study of Buffer-Aided Space-Time Coding for Multiple-Antenna Cooperative Wireless Networks

    Full text link
    In this work we propose an adaptive buffer-aided space-time coding scheme for cooperative wireless networks. A maximum likelihood receiver and adjustable code vectors are considered subject to a power constraint with an amplify-and-forward cooperation strategy. Each multiple-antenna relay is equipped with a buffer and is capable of storing the received symbols before forwarding them to the destination. We also present an adaptive relay selection and optimization algorithm, in which the instantaneous signal to noise ratio in each link is calculated and compared at the destination. An adjustable code vector obtained by a feedback channel at each relay is employed to form a space-time coded vector which achieves a higher coding gain than standard schemes. A stochastic gradient algorithm is developed to compute the parameters of the adjustable code vector with reduced computational complexity. Simulation results show that the proposed buffer-aided scheme and algorithm obtain performance gains over existing schemes.Comment: 7 pages, 2 figure

    Multi-User Flexible Coordinated Beamforming using Lattice Reduction for Massive MIMO Systems

    Full text link
    The application of precoding algorithms in multi-user massive multiple-input multiple-output (MU-Massive-MIMO) systems is restricted by the dimensionality constraint that the number of transmit antennas has to be greater than or equal to the total number of receive antennas. In this paper, a lattice reduction (LR)-aided flexible coordinated beamforming (LR-FlexCoBF) algorithm is proposed to overcome the dimensionality constraint in overloaded MU-Massive-MIMO systems. A random user selection scheme is integrated with the proposed LR-FlexCoBF to extend its application to MU-Massive-MIMO systems with arbitary overloading levels. Simulation results show that significant improvements in terms of bit error rate (BER) and sum-rate performances can be achieved by the proposed LR-FlexCoBF precoding algorithm.Comment: 5 figures, Eusipc

    Study of Joint MSINR and Relay Selection Algorithms for Distributed Beamforming

    Full text link
    This paper presents joint maximum signal-to-interference-plus-noise ratio (MSINR) and relay selection algorithms for distributed beamforming. We propose a joint MSINR and restricted greedy search relay selection (RGSRS) algorithm with a total relay transmit power constraint that iteratively optimizes both the beamforming weights at the relays nodes, maximizing the SINR at the destination. Specifically, we devise a relay selection scheme that based on greedy search and compare it to other schemes like restricted random relay selection (RRRS) and restricted exhaustive search relay selection (RESRS). A complexity analysis is provided and simulation results show that the proposed joint MSINR and RGSRS algorithm achieves excellent bit error rate (BER) and SINR performances.Comment: 7 pages, 2 figures. arXiv admin note: text overlap with arXiv:1707.0095

    Study of Opportunistic Cooperation Techniques using Jamming and Relays for Physical-Layer Security in Buffer-aided Relay Networks

    Full text link
    In this paper, we investigate opportunistic relay and jammer cooperation schemes in multiple-input multiple-output (MIMO) buffer-aided relay networks. The network consists of one source, an arbitrary number of relay nodes, legitimate users and eavesdroppers, with the constraints of physical layer security. We propose an algorithm to select a set of relay nodes to enhance the legitimate users' transmission and another set of relay nodes to perform jamming of the eavesdroppers. With Inter-Relay interference (IRI) taken into account, interference cancellation can be implemented to assist the transmission of the legitimate users. Secondly, IRI can also be used to further increase the level of harm of the jamming signal to the eavesdroppers. By exploiting the fact that the jamming signal can be stored at the relay nodes, we also propose a hybrid algorithm to set a signal-to-interference and noise ratio (SINR) threshold at the node to determine the type of signal stored at the relay node. With this separation, the signals with high SINR are delivered to the users as conventional relay systems and the low SINR performance signals are stored as potential jamming signals. Simulation results show that the proposed techniques obtain a significant improvement in secrecy rate over previously reported algorithms.Comment: 8 pages, 3 figure
    • …
    corecore