2,599 research outputs found

    Weighted-Lasso for Structured Network Inference from Time Course Data

    Full text link
    We present a weighted-Lasso method to infer the parameters of a first-order vector auto-regressive model that describes time course expression data generated by directed gene-to-gene regulation networks. These networks are assumed to own a prior internal structure of connectivity which drives the inference method. This prior structure can be either derived from prior biological knowledge or inferred by the method itself. We illustrate the performance of this structure-based penalization both on synthetic data and on two canonical regulatory networks, first yeast cell cycle regulation network by analyzing Spellman et al's dataset and second E. coli S.O.S. DNA repair network by analysing U. Alon's lab data

    Bayesian nonparametric sparse VAR models

    Get PDF
    High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.Comment: Forthcoming in "Journal of Econometrics" ---- Revised Version of the paper "Bayesian nonparametric Seemingly Unrelated Regression Models" ---- Supplementary Material available on reques

    High-Dimensional Joint Estimation of Multiple Directed Gaussian Graphical Models

    Full text link
    We consider the problem of jointly estimating multiple related directed acyclic graph (DAG) models based on high-dimensional data from each graph. This problem is motivated by the task of learning gene regulatory networks based on gene expression data from different tissues, developmental stages or disease states. We prove that under certain regularity conditions, the proposed â„“0\ell_0-penalized maximum likelihood estimator converges in Frobenius norm to the adjacency matrices consistent with the data-generating distributions and has the correct sparsity. In particular, we show that this joint estimation procedure leads to a faster convergence rate than estimating each DAG model separately. As a corollary, we also obtain high-dimensional consistency results for causal inference from a mix of observational and interventional data. For practical purposes, we propose \emph{jointGES} consisting of Greedy Equivalence Search (GES) to estimate the union of all DAG models followed by variable selection using lasso to obtain the different DAGs, and we analyze its consistency guarantees. The proposed method is illustrated through an analysis of simulated data as well as epithelial ovarian cancer gene expression data

    Foundational principles for large scale inference: Illustrations through correlation mining

    Full text link
    When can reliable inference be drawn in the "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-starved: a regime where the number nn of acquired samples (statistical replicates) is far fewer than the number pp of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data." Sample complexity however has received relatively less attention, especially in the setting when the sample size nn is fixed, and the dimension pp grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. We demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks
    • …
    corecore