3 research outputs found

    An End-to-end Model for Entity-level Relation Extraction using Multi-instance Learning

    Full text link
    We present a joint model for entity-level relation extraction from documents. In contrast to other approaches - which focus on local intra-sentence mention pairs and thus require annotations on mention level - our model operates on entity level. To do so, a multi-task approach is followed that builds upon coreference resolution and gathers relevant signals via multi-instance learning with multi-level representations combining global entity and local mention information. We achieve state-of-the-art relation extraction results on the DocRED dataset and report the first entity-level end-to-end relation extraction results for future reference. Finally, our experimental results suggest that a joint approach is on par with task-specific learning, though more efficient due to shared parameters and training steps.Comment: Published at EACL 202

    Self-attention-based BiGRU and capsule network for named entity recognition

    Full text link
    Named entity recognition(NER) is one of the tasks of natural language processing(NLP). In view of the problem that the traditional character representation ability is weak and the neural network method is unable to capture the important sequence information. An self-attention-based bidirectional gated recurrent unit(BiGRU) and capsule network(CapsNet) for NER is proposed. This model generates character vectors through bidirectional encoder representation of transformers(BERT) pre-trained model. BiGRU is used to capture sequence context features, and self-attention mechanism is proposed to give different focus on the information captured by hidden layer of BiGRU. Finally, we propose to use CapsNet for entity recognition. We evaluated the recognition performance of the model on two datasets. Experimental results show that the model has better performance without relying on external dictionary information

    A Survey on Deep Learning for Named Entity Recognition

    Full text link
    Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.Comment: 20 pages, 12 figures, 3 table
    corecore