248 research outputs found

    Deep Learning for Head Pose Estimation: A Survey

    Get PDF
    Head pose estimation (HPE) is an active and popular area of research. Over the years, many approaches have constantly been developed, leading to a progressive improvement in accuracy; nevertheless, head pose estimation remains an open research topic, especially in unconstrained environments. In this paper, we will review the increasing amount of available datasets and the modern methodologies used to estimate orientation, with a special attention to deep learning techniques. We will discuss the evolution of the feld by proposing a classifcation of head pose estimation methods, explaining their advantages and disadvantages, and highlighting the diferent ways deep learning techniques have been used in the context of HPE. An in-depth performance comparison and discussion is presented at the end of the work. We also highlight the most promising research directions for future investigations on the topic

    A Survey on Computer Vision based Human Analysis in the COVID-19 Era

    Full text link
    The emergence of COVID-19 has had a global and profound impact, not only on society as a whole, but also on the lives of individuals. Various prevention measures were introduced around the world to limit the transmission of the disease, including face masks, mandates for social distancing and regular disinfection in public spaces, and the use of screening applications. These developments also triggered the need for novel and improved computer vision techniques capable of (i) providing support to the prevention measures through an automated analysis of visual data, on the one hand, and (ii) facilitating normal operation of existing vision-based services, such as biometric authentication schemes, on the other. Especially important here, are computer vision techniques that focus on the analysis of people and faces in visual data and have been affected the most by the partial occlusions introduced by the mandates for facial masks. Such computer vision based human analysis techniques include face and face-mask detection approaches, face recognition techniques, crowd counting solutions, age and expression estimation procedures, models for detecting face-hand interactions and many others, and have seen considerable attention over recent years. The goal of this survey is to provide an introduction to the problems induced by COVID-19 into such research and to present a comprehensive review of the work done in the computer vision based human analysis field. Particular attention is paid to the impact of facial masks on the performance of various methods and recent solutions to mitigate this problem. Additionally, a detailed review of existing datasets useful for the development and evaluation of methods for COVID-19 related applications is also provided. Finally, to help advance the field further, a discussion on the main open challenges and future research direction is given.Comment: Submitted to Image and Vision Computing, 44 pages, 7 figure

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Open-Source Face Recognition Frameworks: A Review of the Landscape

    Get PDF
    publishedVersio

    Enhanced contextual based deep learning model for niqab face detection

    Get PDF
    Human face detection is one of the most investigated areas in computer vision which plays a fundamental role as the first step for all face processing and facial analysis systems, such as face recognition, security monitoring, and facial emotion recognition. Despite the great impact of Deep Learning Convolutional neural network (DL-CNN) approaches on solving many unconstrained face detection problems in recent years, the low performance of current face detection models when detecting highly occluded faces remains a challenging problem and worth of investigation. This challenge tends to be higher when the occlusion covers most of the face which dramatically reduce the number of learned representative features that are used by Feature Extraction Network (FEN) to discriminate face parts from the background. The lack of occluded face dataset with sufficient images for heavily occluded faces is another challenge that degrades the performance. Therefore, this research addressed the issue of low performance and developed an enhanced occluded face detection model for detecting and localizing heavily occluded faces. First, a highly occluded faces dataset was developed to provide sufficient training examples incorporated with contextual-based annotation technique, to maximize the amount of facial salient features. Second, using the training half of the dataset, a deep learning-CNN Occluded Face Detection model (OFD) with an enhanced feature extraction and detection network was proposed and trained. Common deep learning techniques, namely transfer learning and data augmentation techniques were used to speed up the training process. The false-positive reduction based on max-in-out strategy was adopted to reduce the high false-positive rate. The proposed model was evaluated and benchmarked with five current face detection models on the dataset. The obtained results show that OFD achieved improved performance in terms of accuracy (average 37%), and average precision (16.6%) compared to current face detection models. The findings revealed that the proposed model outperformed current face detection models in improving the detection of highly occluded faces. Based on the findings, an improved contextual based labeling technique has been successfully developed to address the insufficient functionalities of current labeling technique. Faculty of Engineering - School of Computing183http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:150777 Deep Learning Convolutional neural network (DL-CNN), Feature Extraction Network (FEN), Occluded Face Detection model (OFD

    Recent Advances in Deep Learning Techniques for Face Recognition

    Full text link
    In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.Comment: 32 pages and citation: M. T. H. Fuad et al., "Recent Advances in Deep Learning Techniques for Face Recognition," in IEEE Access, vol. 9, pp. 99112-99142, 2021, doi: 10.1109/ACCESS.2021.309613

    DirectMHP: Direct 2D Multi-Person Head Pose Estimation with Full-range Angles

    Full text link
    Existing head pose estimation (HPE) mainly focuses on single person with pre-detected frontal heads, which limits their applications in real complex scenarios with multi-persons. We argue that these single HPE methods are fragile and inefficient for Multi-Person Head Pose Estimation (MPHPE) since they rely on the separately trained face detector that cannot generalize well to full viewpoints, especially for heads with invisible face areas. In this paper, we focus on the full-range MPHPE problem, and propose a direct end-to-end simple baseline named DirectMHP. Due to the lack of datasets applicable to the full-range MPHPE, we firstly construct two benchmarks by extracting ground-truth labels for head detection and head orientation from public datasets AGORA and CMU Panoptic. They are rather challenging for having many truncated, occluded, tiny and unevenly illuminated human heads. Then, we design a novel end-to-end trainable one-stage network architecture by joint regressing locations and orientations of multi-head to address the MPHPE problem. Specifically, we regard pose as an auxiliary attribute of the head, and append it after the traditional object prediction. Arbitrary pose representation such as Euler angles is acceptable by this flexible design. Then, we jointly optimize these two tasks by sharing features and utilizing appropriate multiple losses. In this way, our method can implicitly benefit from more surroundings to improve HPE accuracy while maintaining head detection performance. We present comprehensive comparisons with state-of-the-art single HPE methods on public benchmarks, as well as superior baseline results on our constructed MPHPE datasets. Datasets and code are released in https://github.com/hnuzhy/DirectMHP.Comment: 13 page
    corecore