27,826 research outputs found

    CANDiS: Coupled & Attention-Driven Neural Distant Supervision

    Full text link
    Distant Supervision for Relation Extraction uses heuristically aligned text data with an existing knowledge base as training data. The unsupervised nature of this technique allows it to scale to web-scale relation extraction tasks, at the expense of noise in the training data. Previous work has explored relationships among instances of the same entity-pair to reduce this noise, but relationships among instances across entity-pairs have not been fully exploited. We explore the use of inter-instance couplings based on verb-phrase and entity type similarities. We propose a novel technique, CANDiS, which casts distant supervision using inter-instance coupling into an end-to-end neural network model. CANDiS incorporates an attention module at the instance-level to model the multi-instance nature of this problem. CANDiS outperforms existing state-of-the-art techniques on a standard benchmark dataset.Comment: WiNLP 201

    Relation Extraction : A Survey

    Full text link
    With the advent of the Internet, large amount of digital text is generated everyday in the form of news articles, research publications, blogs, question answering forums and social media. It is important to develop techniques for extracting information automatically from these documents, as lot of important information is hidden within them. This extracted information can be used to improve access and management of knowledge hidden in large text corpora. Several applications such as Question Answering, Information Retrieval would benefit from this information. Entities like persons and organizations, form the most basic unit of the information. Occurrences of entities in a sentence are often linked through well-defined relations; e.g., occurrences of person and organization in a sentence may be linked through relations such as employed at. The task of Relation Extraction (RE) is to identify such relations automatically. In this paper, we survey several important supervised, semi-supervised and unsupervised RE techniques. We also cover the paradigms of Open Information Extraction (OIE) and Distant Supervision. Finally, we describe some of the recent trends in the RE techniques and possible future research directions. This survey would be useful for three kinds of readers - i) Newcomers in the field who want to quickly learn about RE; ii) Researchers who want to know how the various RE techniques evolved over time and what are possible future research directions and iii) Practitioners who just need to know which RE technique works best in various settings

    Cross-Sentence N-ary Relation Extraction with Graph LSTMs

    Full text link
    Past work in relation extraction has focused on binary relations in single sentences. Recent NLP inroads in high-value domains have sparked interest in the more general setting of extracting n-ary relations that span multiple sentences. In this paper, we explore a general relation extraction framework based on graph long short-term memory networks (graph LSTMs) that can be easily extended to cross-sentence n-ary relation extraction. The graph formulation provides a unified way of exploring different LSTM approaches and incorporating various intra-sentential and inter-sentential dependencies, such as sequential, syntactic, and discourse relations. A robust contextual representation is learned for the entities, which serves as input to the relation classifier. This simplifies handling of relations with arbitrary arity, and enables multi-task learning with related relations. We evaluate this framework in two important precision medicine settings, demonstrating its effectiveness with both conventional supervised learning and distant supervision. Cross-sentence extraction produced larger knowledge bases. and multi-task learning significantly improved extraction accuracy. A thorough analysis of various LSTM approaches yielded useful insight the impact of linguistic analysis on extraction accuracy.Comment: Conditional accepted by TACL in December 2016; published in April 2017; presented at ACL in August 201

    Towards Time-Aware Distant Supervision for Relation Extraction

    Full text link
    Distant supervision for relation extraction heavily suffers from the wrong labeling problem. To alleviate this issue in news data with the timestamp, we take a new factor time into consideration and propose a novel time-aware distant supervision framework (Time-DS). Time-DS is composed of a time series instance-popularity and two strategies. Instance-popularity is to encode the strong relevance of time and true relation mention. Therefore, instance-popularity would be an effective clue to reduce the noises generated through distant supervision labeling. The two strategies, i.e., hard filter and curriculum learning are both ways to implement instance-popularity for better relation extraction in the manner of Time-DS. The curriculum learning is a more sophisticated and flexible way to exploit instance-popularity to eliminate the bad effects of noises, thus get better relation extraction performance. Experiments on our collected multi-source news corpus show that Time-DS achieves significant improvements for relation extraction

    DSReg: Using Distant Supervision as a Regularizer

    Full text link
    In this paper, we aim at tackling a general issue in NLP tasks where some of the negative examples are highly similar to the positive examples, i.e., hard-negative examples. We propose the distant supervision as a regularizer (DSReg) approach to tackle this issue. The original task is converted to a multi-task learning problem, in which distant supervision is used to retrieve hard-negative examples. The obtained hard-negative examples are then used as a regularizer. The original target objective of distinguishing positive examples from negative examples is jointly optimized with the auxiliary task objective of distinguishing softened positive (i.e., hard-negative examples plus positive examples) from easy-negative examples. In the neural context, this can be done by outputting the same representation from the last neural layer to different softmaxsoftmax functions. Using this strategy, we can improve the performance of baseline models in a range of different NLP tasks, including text classification, sequence labeling and reading comprehension

    Combining Distant and Direct Supervision for Neural Relation Extraction

    Full text link
    In relation extraction with distant supervision, noisy labels make it difficult to train quality models. Previous neural models addressed this problem using an attention mechanism that attends to sentences that are likely to express the relations. We improve such models by combining the distant supervision data with an additional directly-supervised data, which we use as supervision for the attention weights. We find that joint training on both types of supervision leads to a better model because it improves the model's ability to identify noisy sentences. In addition, we find that sigmoidal attention weights with max pooling achieves better performance over the commonly used weighted average attention in this setup. Our proposed method achieves a new state-of-the-art result on the widely used FB-NYT dataset

    OpenKI: Integrating Open Information Extraction and Knowledge Bases with Relation Inference

    Full text link
    In this paper, we consider advancing web-scale knowledge extraction and alignment by integrating OpenIE extractions in the form of (subject, predicate, object) triples with Knowledge Bases (KB). Traditional techniques from universal schema and from schema mapping fall in two extremes: either they perform instance-level inference relying on embedding for (subject, object) pairs, thus cannot handle pairs absent in any existing triples; or they perform predicate-level mapping and completely ignore background evidence from individual entities, thus cannot achieve satisfying quality. We propose OpenKI to handle sparsity of OpenIE extractions by performing instance-level inference: for each entity, we encode the rich information in its neighborhood in both KB and OpenIE extractions, and leverage this information in relation inference by exploring different methods of aggregation and attention. In order to handle unseen entities, our model is designed without creating entity-specific parameters. Extensive experiments show that this method not only significantly improves state-of-the-art for conventional OpenIE extractions like ReVerb, but also boosts the performance on OpenIE from semi-structured data, where new entity pairs are abundant and data are fairly sparse

    Machine Learning with World Knowledge: The Position and Survey

    Full text link
    Machine learning has become pervasive in multiple domains, impacting a wide variety of applications, such as knowledge discovery and data mining, natural language processing, information retrieval, computer vision, social and health informatics, ubiquitous computing, etc. Two essential problems of machine learning are how to generate features and how to acquire labels for machines to learn. Particularly, labeling large amount of data for each domain-specific problem can be very time consuming and costly. It has become a key obstacle in making learning protocols realistic in applications. In this paper, we will discuss how to use the existing general-purpose world knowledge to enhance machine learning processes, by enriching the features or reducing the labeling work. We start from the comparison of world knowledge with domain-specific knowledge, and then introduce three key problems in using world knowledge in learning processes, i.e., explicit and implicit feature representation, inference for knowledge linking and disambiguation, and learning with direct or indirect supervision. Finally we discuss the future directions of this research topic

    Relation Discovery with Out-of-Relation Knowledge Base as Supervision

    Full text link
    Unsupervised relation discovery aims to discover new relations from a given text corpus without annotated data. However, it does not consider existing human annotated knowledge bases even when they are relevant to the relations to be discovered. In this paper, we study the problem of how to use out-of-relation knowledge bases to supervise the discovery of unseen relations, where out-of-relation means that relations to discover from the text corpus and those in knowledge bases are not overlapped. We construct a set of constraints between entity pairs based on the knowledge base embedding and then incorporate constraints into the relation discovery by a variational auto-encoder based algorithm. Experiments show that our new approach can improve the state-of-the-art relation discovery performance by a large margin.Comment: Aceepted by NAACL-HLT 201

    A Data-driven Approach for Noise Reduction in Distantly Supervised Biomedical Relation Extraction

    Full text link
    Fact triples are a common form of structured knowledge used within the biomedical domain. As the amount of unstructured scientific texts continues to grow, manual annotation of these texts for the task of relation extraction becomes increasingly expensive. Distant supervision offers a viable approach to combat this by quickly producing large amounts of labeled, but considerably noisy, data. We aim to reduce such noise by extending an entity-enriched relation classification BERT model to the problem of multiple instance learning, and defining a simple data encoding scheme that significantly reduces noise, reaching state-of-the-art performance for distantly-supervised biomedical relation extraction. Our approach further encodes knowledge about the direction of relation triples, allowing for increased focus on relation learning by reducing noise and alleviating the need for joint learning with knowledge graph completion
    corecore