3 research outputs found

    Batch-normalized joint training for DNN-based distant speech recognition

    Full text link
    Improving distant speech recognition is a crucial step towards flexible human-machine interfaces. Current technology, however, still exhibits a lack of robustness, especially when adverse acoustic conditions are met. Despite the significant progress made in the last years on both speech enhancement and speech recognition, one potential limitation of state-of-the-art technology lies in composing modules that are not well matched because they are not trained jointly. To address this concern, a promising approach consists in concatenating a speech enhancement and a speech recognition deep neural network and to jointly update their parameters as if they were within a single bigger network. Unfortunately, joint training can be difficult because the output distribution of the speech enhancement system may change substantially during the optimization procedure. The speech recognition module would have to deal with an input distribution that is non-stationary and unnormalized. To mitigate this issue, we propose a joint training approach based on a fully batch-normalized architecture. Experiments, conducted using different datasets, tasks and acoustic conditions, revealed that the proposed framework significantly overtakes other competitive solutions, especially in challenging environments.Comment: arXiv admin note: text overlap with arXiv:1703.0800

    Adversarial Joint Training with Self-Attention Mechanism for Robust End-to-End Speech Recognition

    Full text link
    Lately, the self-attention mechanism has marked a new milestone in the field of automatic speech recognition (ASR). Nevertheless, its performance is susceptible to environmental intrusions as the system predicts the next output symbol depending on the full input sequence and the previous predictions. Inspired by the extensive applications of the generative adversarial networks (GANs) in speech enhancement and ASR tasks, we propose an adversarial joint training framework with the self-attention mechanism to boost the noise robustness of the ASR system. Generally, it consists of a self-attention speech enhancement GAN and a self-attention end-to-end ASR model. There are two highlights which are worth noting in this proposed framework. One is that it benefits from the advancement of both self-attention mechanism and GANs; while the other is that the discriminator of GAN plays the role of the global discriminant network in the stage of the adversarial joint training, which guides the enhancement front-end to capture more compatible structures for the subsequent ASR module and thereby offsets the limitation of the separate training and handcrafted loss functions. With the adversarial joint optimization, the proposed framework is expected to learn more robust representations suitable for the ASR task. We execute systematic experiments on the corpus AISHELL-1, and the experimental results show that on the artificial noisy test set, the proposed framework achieves the relative improvements of 66% compared to the ASR model trained by clean data solely, 35.1% compared to the speech enhancement & ASR scheme without joint training, and 5.3% compared to multi-condition training

    JOINT DISCRIMINATIVE FRONT END AND BACK END TRAINING FOR IMPROVED SPEECH RECOGNITION ACCURACY

    No full text
    This paper presents a general discriminative training method for both the front end feature extractor and back end acoustic model of an automatic speech recognition system. The front end and back end parameters are jointly trained using the Rprop algorithm against a maximum mutual information (MMI) objective function. Results are presented on the Aurora 2 noisy English digit recognition task. It is shown that discriminative training of the front end or back end alone can improve accuracy, but joint training is considerably better. 1
    corecore