384 research outputs found

    Combating Representation Learning Disparity with Geometric Harmonization

    Full text link
    Self-supervised learning (SSL) as an effective paradigm of representation learning has achieved tremendous success on various curated datasets in diverse scenarios. Nevertheless, when facing the long-tailed distribution in real-world applications, it is still hard for existing methods to capture transferable and robust representation. Conventional SSL methods, pursuing sample-level uniformity, easily leads to representation learning disparity where head classes dominate the feature regime but tail classes passively collapse. To address this problem, we propose a novel Geometric Harmonization (GH) method to encourage category-level uniformity in representation learning, which is more benign to the minority and almost does not hurt the majority under long-tailed distribution. Specially, GH measures the population statistics of the embedding space on top of self-supervised learning, and then infer an fine-grained instance-wise calibration to constrain the space expansion of head classes and avoid the passive collapse of tail classes. Our proposal does not alter the setting of SSL and can be easily integrated into existing methods in a low-cost manner. Extensive results on a range of benchmark datasets show the effectiveness of GH with high tolerance to the distribution skewness. Our code is available at https://github.com/MediaBrain-SJTU/Geometric-Harmonization.Comment: Accepted to NeurIPS 2023 (spotlight

    Alcohol use effects on adolescent brain development revealed by simultaneously removing confounding factors, identifying morphometric patterns, and classifying individuals

    Get PDF
    Group analysis of brain magnetic resonance imaging (MRI) metrics frequently employs generalized additive models (GAM) to remove contributions of confounding factors before identifying cohort specific characteristics. For example, the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) used such an approach to identify effects of alcohol misuse on the developing brain. Here, we hypothesized that considering confounding factors before group analysis removes information relevant for distinguishing adolescents with drinking history from those without. To test this hypothesis, we introduce a machine-learning model that identifies cohort-specific, neuromorphometric patterns by simultaneously training a GAM and generic classifier on macrostructural MRI and microstructural diffusion tensor imaging (DTI) metrics and compare it to more traditional group analysis and machine-learning approaches. Using a baseline NCANDA MR dataset (N = 705), the proposed machine learning approach identified a pattern of eight brain regions unique to adolescents who misuse alcohol. Classifying high-drinking adolescents was more accurate with that pattern than using regions identified with alternative approaches. The findings of the joint model approach thus were (1) impartial to confounding factors; (2) relevant to drinking behaviors; and (3) in concurrence with the alcohol literature. © 2018 The Author(s).1

    Learning Disentangled Representations in the Imaging Domain

    Full text link
    Disentangled representation learning has been proposed as an approach to learning general representations even in the absence of, or with limited, supervision. A good general representation can be fine-tuned for new target tasks using modest amounts of data, or used directly in unseen domains achieving remarkable performance in the corresponding task. This alleviation of the data and annotation requirements offers tantalising prospects for applications in computer vision and healthcare. In this tutorial paper, we motivate the need for disentangled representations, present key theory, and detail practical building blocks and criteria for learning such representations. We discuss applications in medical imaging and computer vision emphasising choices made in exemplar key works. We conclude by presenting remaining challenges and opportunities.Comment: Submitted. This paper follows a tutorial style but also surveys a considerable (more than 200 citations) number of work

    Model driven validation approach for enterprise architecture and motivation extensions

    Get PDF
    As the endorsement of Enterprise Architecture (EA) modelling continues to grow in diversity and complexity, management of its schema, artefacts, semantics and relationships has become an important business concern. To maintain agility and flexibility within competitive markets, organizations have also been compelled to explore ways of adjusting proactively to innovations, changes and complex events also by use of EA concepts to model business processes and strategies. Thus the need to ensure appropriate validation of EA taxonomies has been considered severally as an essential requirement for these processes in order to exert business motivation; relate information systems to technological infrastructure. However, since many taxonomies deployed today use widespread and disparate modelling methodologies, the possibility to adopt a generic validation approach remains a challenge. The proliferation of EA methodologies and perspectives has also led to intricacies in the formalization and validation of EA constructs as models often times have variant schematic interpretations. Thus, disparate implementations and inconsistent simulation of alignment between business architectures and heterogeneous application systems is common within the EA domain (Jonkers et al., 2003). In this research, the Model Driven Validation Approach (MDVA) is introduced. MDVA allows modelling of EA with validation attributes, formalization of the validation concepts and transformation of model artefacts to ontologies. The transformation simplifies querying based on motivation and constraints. As the extended methodology is grounded on the semiotics of existing tools, validation is executed using ubiquitous query language. The major contributions of this work are the extension of a metamodel of Business Layer of an EAF with Validation Element and the development of EAF model to ontology transformation Approach. With this innovation, domain-driven design and object-oriented analysis concepts are applied to achieve EAF model’s validation using ontology querying methodology. Additionally, the MDVA facilitates the traceability of EA artefacts using ontology graph patterns

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Probabilistic models for music

    Get PDF
    This thesis proposes to analyse symbolic musical data under a statistical viewpoint, using state-of-the-art machine learning techniques. Our main argument is to show that it is possible to design generative models that are able to predict and to generate music given arbitrary contexts in a genre similar to a training corpus, using a minimal amount of data. For instance, a carefully designed generative model could guess what would be a good accompaniment for a given melody. Conversely, we propose generative models in this thesis that can be sampled to generate realistic melodies given harmonic context. Most computer music research has been devoted so far to the direct modeling of audio data. However, most of the music models today do not consider the musical structure at all. We argue that reliable symbolic music models such a the ones presented in this thesis could dramatically improve the performance of audio algorithms applied in more general contexts. Hence, our main contributions in this thesis are three-fold: We have shown empirically that long term dependencies are present in music data and we provide quantitative measures of such dependencies; We have shown empirically that using domain knowledge allows to capture long term dependencies in music signal better than with standard statistical models for temporal data. We describe many probabilistic models aimed to capture various aspects of symbolic polyphonic music. Such models can be used for music prediction. Moreover, these models can be sampled to generate realistic music sequences; We designed various representations for music that could be used as observations by the proposed probabilistic models
    corecore