14,248 research outputs found

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods

    T-Crowd: Effective Crowdsourcing for Tabular Data

    Full text link
    Crowdsourcing employs human workers to solve computer-hard problems, such as data cleaning, entity resolution, and sentiment analysis. When crowdsourcing tabular data, e.g., the attribute values of an entity set, a worker's answers on the different attributes (e.g., the nationality and age of a celebrity star) are often treated independently. This assumption is not always true and can lead to suboptimal crowdsourcing performance. In this paper, we present the T-Crowd system, which takes into consideration the intricate relationships among tasks, in order to converge faster to their true values. Particularly, T-Crowd integrates each worker's answers on different attributes to effectively learn his/her trustworthiness and the true data values. The attribute relationship information is also used to guide task allocation to workers. Finally, T-Crowd seamlessly supports categorical and continuous attributes, which are the two main datatypes found in typical databases. Our extensive experiments on real and synthetic datasets show that T-Crowd outperforms state-of-the-art methods in terms of truth inference and reducing the cost of crowdsourcing

    Crowdsourcing complex workflows under budget constraints

    Get PDF
    We consider the problem of task allocation in crowdsourcing systems with multiple complex workflows, each of which consists of a set of interdependent micro-tasks. We propose Budgeteer, an algorithm to solve this problem under a budget constraint. In particular, our algorithm first calculates an efficient way to allocate budget to each workflow. It then determines the number of inter-dependent micro-tasks and the price to pay for each task within each workflow, given the corresponding budget constraints. We empirically evaluate it on a well-known crowdsourcing-based text correction workflow using Amazon Mechanical Turk, and show that Budgeteer can achieve similar levels of accuracy to current benchmarks, but is on average 45% cheaper

    Iterative Bayesian Learning for Crowdsourced Regression

    Full text link
    Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme

    Empirical Methodology for Crowdsourcing Ground Truth

    Full text link
    The process of gathering ground truth data through human annotation is a major bottleneck in the use of information extraction methods for populating the Semantic Web. Crowdsourcing-based approaches are gaining popularity in the attempt to solve the issues related to volume of data and lack of annotators. Typically these practices use inter-annotator agreement as a measure of quality. However, in many domains, such as event detection, there is ambiguity in the data, as well as a multitude of perspectives of the information examples. We present an empirically derived methodology for efficiently gathering of ground truth data in a diverse set of use cases covering a variety of domains and annotation tasks. Central to our approach is the use of CrowdTruth metrics that capture inter-annotator disagreement. We show that measuring disagreement is essential for acquiring a high quality ground truth. We achieve this by comparing the quality of the data aggregated with CrowdTruth metrics with majority vote, over a set of diverse crowdsourcing tasks: Medical Relation Extraction, Twitter Event Identification, News Event Extraction and Sound Interpretation. We also show that an increased number of crowd workers leads to growth and stabilization in the quality of annotations, going against the usual practice of employing a small number of annotators.Comment: in publication at the Semantic Web Journa

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201
    corecore