2,704 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Evaluation, Modeling and Optimization of Coverage Enhancement Methods of NB-IoT

    Get PDF
    Narrowband Internet of Things (NB-IoT) is a new Low Power Wide Area Network (LPWAN) technology released by 3GPP. The primary goals of NB-IoT are improved coverage, massive capacity, low cost, and long battery life. In order to improve coverage, NB-IoT has promising solutions, such as increasing transmission repetitions, decreasing bandwidth, and adapting the Modulation and Coding Scheme (MCS). In this paper, we present an implementation of coverage enhancement features of NB-IoT in NS-3, an end-to-end network simulator. The resource allocation and link adaptation in NS-3 are modified to comply with the new features of NB-IoT. Using the developed simulation framework, the influence of the new features on network reliability and latency is evaluated. Furthermore, an optimal hybrid link adaptation strategy based on all three features is proposed. To achieve this, we formulate an optimization problem that has an objective function based on latency, and constraint based on the Signal to Noise Ratio (SNR). Then, we propose several algorithms to minimize latency and compare them with respect to accuracy and speed. The best hybrid solution is chosen and implemented in the NS-3 simulator by which the latency formulation is verified. The numerical results show that the proposed optimization algorithm for hybrid link adaptation is eight times faster than the exhaustive search approach and yields similar latency

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Performance Analysis of a 5G Transceiver Implementation for Remote Areas Scenarios

    Full text link
    The fifth generation of mobile communication networks will support a large set of new services and applications. One important use case is the remote area coverage for broadband Internet access. This use case ha significant social and economic impact, since a considerable percentage of the global population living in low populated area does not have Internet access and the communication infrastructure in rural areas can be used to improve agribusiness productivity. The aim of this paper is to analyze the performance of a 5G for Remote Areas transceiver, implemented on field programmable gate array based hardware for real-time processing. This transceiver employs the latest digital communication techniques, such as generalized frequency division multiplexing waveform combined with 2 by 2 multiple-input multiple-output diversity scheme and polar channel coding. The performance of the prototype is evaluated regarding its out-of-band emissions and bit error rate under AWGN channel.Comment: Presented in 2018 European Conference on Networks and Communications (EuCNC),18-21 June, 2018, Ljubljana, Sloveni
    corecore