1,545 research outputs found

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    An Analytical Model for Wireless Mesh Networks with Collision-Free TDMA and Finite Queues

    Full text link
    Wireless mesh networks are a promising technology for connecting sensors and actuators with high flexibility and low investment costs. In industrial applications, however, reliability is essential. Therefore, two time-slotted medium access methods, DSME and TSCH, were added to the IEEE 802.15.4 standard. They allow collision-free communication in multi-hop networks and provide channel hopping for mitigating external interferences. The slot schedule used in these networks is of high importance for the network performance. This paper supports the development of efficient schedules by providing an analytical model for the assessment of such schedules, focused on TSCH. A Markov chain model for the finite queue on every node is introduced that takes the slot distribution into account. The models of all nodes are interconnected to calculate network metrics such as packet delivery ratio, end-to-end delay and throughput. An evaluation compares the model with a simulation of the Orchestra schedule. The model is applied to Orchestra as well as to two simple distributed scheduling algorithms to demonstrate the importance of traffic-awareness for achieving high throughput.Comment: 17 pages, 14 figure

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    TCP-Aware Backpressure Routing and Scheduling

    Full text link
    In this work, we explore the performance of backpressure routing and scheduling for TCP flows over wireless networks. TCP and backpressure are not compatible due to a mismatch between the congestion control mechanism of TCP and the queue size based routing and scheduling of the backpressure framework. We propose a TCP-aware backpressure routing and scheduling that takes into account the behavior of TCP flows. TCP-aware backpressure (i) provides throughput optimality guarantees in the Lyapunov optimization framework, (ii) gracefully combines TCP and backpressure without making any changes to the TCP protocol, (iii) improves the throughput of TCP flows significantly, and (iv) provides fairness across competing TCP flows

    Queue-Architecture and Stability Analysis in Cooperative Relay Networks

    Full text link
    An abstraction of the physical layer coding using bit pipes that are coupled through data-rates is insufficient to capture notions such as node cooperation in cooperative relay networks. Consequently, network-stability analyses based on such abstractions are valid for non-cooperative schemes alone and meaningless for cooperative schemes. Motivated from this, this paper develops a framework that brings the information-theoretic coding scheme together with network-stability analysis. This framework does not constrain the system to any particular achievable scheme, i.e., the relays can use any cooperative coding strategy of its choice, be it amplify/compress/quantize or any alter-and-forward scheme. The paper focuses on the scenario when coherence duration is of the same order of the packet/codeword duration, the channel distribution is unknown and the fading state is only known causally. The main contributions of this paper are two-fold: first, it develops a low-complexity queue-architecture to enable stable operation of cooperative relay networks, and, second, it establishes the throughput optimality of a simple network algorithm that utilizes this queue-architecture.Comment: 16 pages, 1 figur
    corecore