8 research outputs found

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    A Soft-Output STBC Decoder for Aeronautical Telemetry, Journal of Telecommunications and Information Technology, 2020, nr 1

    Get PDF
    Alamouti encoding is a well-known space time block encoding technique used to improve the received signal quality in Rayleigh fading channels. In aeronautical telemetry, this encoding technique is applied to shaped oïŹ€set quadrature phase shift keying tier generation (SOQPSK-TG) modulation in order to handle the two-antenna issue. It is provided for in telemetry-related IRIG standards. In this paper, we propose a unique decoding architecture for Alamouti-encoded SOQPSK-TG signals, taking advantage of pulse amplitude modulation decomposition with soft and hard outputs. We exploit this result to obtain a Viterbi algorithm (VA) for hard decoding and a soft output Viterbi algorithm (SOVA) for soft and hard decoding, with a twofold beneïŹt: operation using one trellis structure, unlike decoders that are based on the 8-waveforms cross-correlated trellis-coded quadrature modulation (XTCQM) approximation, and very attractive bit error rate performance, as well as a complexity trade-o

    Synchronisation, détection et égalisation de modulation à phase continue dans des canaux sélectifs en temps et en fréquence

    Get PDF
    Si les drones militaires connaissent un dĂ©veloppement important depuis une quinzaine d’annĂ©e, suivi depuis quelques annĂ©es par les drones civiles dont les usages ne font que se multiplier, en rĂ©alitĂ© les drones ont un siĂšcle avec le premier vol d’un avion Ă©quipĂ© d’un systĂšme de pilotage automatique sur une centaine de kilomĂštre en 1918. La question des rĂšgles d’usage des drones civiles sont en cours de dĂ©veloppement malgrĂ© leur multiplication pour des usages allant de l’agriculture, Ă  l’observation en passant par la livraison de colis. Ainsi, leur intĂ©gration dans l’espace aĂ©rien reste un enjeu important, ainsi que les standards de communication avec ces drones dans laquelle s’inscrit cette thĂšse. Cette thĂšse vise en effet Ă  Ă©tudier et proposer des solutions pour les liens de communications des drones par satellite.L’intĂ©gration de ce lien de communication permet d’assurer la fiabilitĂ© des communications et particuliĂšrement du lien de Commande et ContrĂŽle partout dans le monde, en s’affranchissant des contraintes d’un rĂ©seau terrestre (comme les zones blanches). En raison de la raretĂ© des ressources frĂ©quentielles dĂ©jĂ  allouĂ©es pour les futurs systĂšmes intĂ©grant des drones, l’efficacitĂ© spectrale devient un paramĂštre important pour leur dĂ©ploiement Ă  grande Ă©chelle et le contexte spatiale demande l’utilisation d’un systĂšme de communication robuste aux non-linĂ©aritĂ©s. Les Modulations Ă  Phase Continue permettent de rĂ©pondre Ă  ces problĂ©matiques. Cependant, ces derniĂšres sont des modulations non-linĂ©aire Ă  mĂ©moire entraĂźnant une augmentation de la complexitĂ© des rĂ©cepteurs. Du fait de la prĂ©sence d’un canal multi-trajet (canal aĂ©ronautique par satellite), le principal objectif de cette thĂšse est de proposer des algorithmes d’égalisation (dans le domaine frĂ©quentiel pour rĂ©duire leur complexitĂ©) et de synchronisation pour CPM adaptĂ©s Ă  ce concept tout en essayant de proposer une complexitĂ© calculatoire raisonnable. Dans un premier temps, nous avons considĂ©rĂ© uniquement des canaux sĂ©lectifs en frĂ©quence et avons Ă©tudier les diffĂ©rents Ă©galiseurs de la littĂ©rature. En Ă©tudiant leur similitudes et diffĂ©rences, nous avons pu dĂ©velopper un Ă©galiseur dans le domaine frĂ©quentiel qui proposant les mĂȘmes performances a une complexitĂ© moindre. Nous proposons Ă©galement des mĂ©thodes d’estimation canal et une mĂ©thode d’estimation conjointe du canal et de la frĂ©quence porteuse. Dans un second temps nous avons montrĂ© comment Ă©tendre ces mĂ©thodes Ă  des canaux sĂ©lectifs en temps et frĂ©quence permettant ainsi de conserver une complexitĂ© calculatoire raisonnable

    Linear approximation of CPM signals for a reduced-complexity, multi-mode telemetry transmitter

    Full text link
    In space applications, hardware (HW) implementation is made more expensive not only by the levels of performance required, but also by complex and rigorous HW qualification tests. Reducing qualification cost and time is thus a key design requirement. In this paper, a new versatile transmitter is proposed for space telemetry, capable of soft-switching across different linear and continuous phase modulation schemes while maintaining the same hardware structure. This permits a single HW qualification to ``cover'' diverse uses of the same hardware, and thus avoid re-qualification in case of configuration changes. The envisaged solution foresees the use of a single filter, suitable not only for linear modulations such as M-QAM, but also for continuous phase modulation methods. At this stage, we focus on pulse code modulation/frequency modulation (PCM/FM), for which we propose a minimum mean square error (MMSE) algorithm. The proposed algorithm, which adds to the system flexibility and effectiveness, may use a single first filter based on Laurent decomposition for initialization, if needed. Performances are assessed using the mean square error (MSE) measure between the proposed MMSE-modulated signal and the completely modulated signal. Simulation results confirm that the proposed algorithm leads to MSE values that are lower than the case of Laurent decomposition using the first component only.Comment: to be published in the IEEE ICC 2023 Conference Proceedings: SAC Satellite and Space Communications Trac

    Equalization of CPM signals over doubly-selective aeronautical channels

    Get PDF
    Communication technologies have always been one of the fundamental milestones of the aeronautical environment. Despite the growing demand for high performances, the aviation context is reluctant to move towards new technologies. Common communication strategies are not suitable to transmit at very high data rates over time- and/or frequency-dispersive (i.e., doubly-selective) air-ground channels, therefore, new requirements have to be fulfilled by an incremental approach, that is, by updating some parts of the legacy systems. This thesis deals with receiver synthesis for aeronautical communication data-links employing continuous-phase modulated (CPM) signals over doubly-selective wireless communication channels. The goal is to design efficient and low-complexity time-varying equalizers, by exploiting all of the CPM signal features, in order to compensate for the effects due to the rapidly time-varying aeronautical channels. The application of the basis expansion model (BEM) to a typical aeronautical communication channel is considered and validated by computer simulations. The second-order statistical characterization of the pseudo-symbols arising from Laurent representation of CPM signals is introduced and discussed. Both linear time-varying (LTV) and widely-linear time-varying (WLTV) zero forcing (ZF) and minimum mean square error (MMSE) receiver structures for CPM signals operating over doubly-selective channels are proposed and implemented by using the BEM model for the channel. Monte Carlo simulation results, carried out in typical aeronautical scenarios, show that the proposed approaches are able to work satisfactorily also over rapidly time-varying channels

    Reduced-Complexity Joint Frequency, Timing and Phase Recovery for PAM Based CPM Receivers

    Get PDF
    In this thesis, we present a reduced-complexity decision-directed joint timing and phase recovery method for continuous phase modulation (CPM). Using a simple linear modulation--pulse amplitude modulation (PAM)--representation of CPM, more popularly known as the Laurent representation of CPM, we develop formulations of a PAM based joint timing error detector (TED) and a phase error detector (PED). We consider the general M-ary single-h CPM model in our developments and numerical examples. We show by analysis and computer simulations that the PAM based error detector formulations have characteristics similar to the conventional (i.e., non-PAM) formulations and they render reliable performance when applied to specific CPM examples; in fact, we show the error detectors are able to perform close to the theoretical limit given by the modified Cramer-Rao bound (MCRB) and able to provide a bit error rate (BER) close to the theoretical value. Also, we investigate the false lock problem in M-ary CPMs and are able to obtain much improved performance over conventional CPM detectors with our PAM based method. Furthermore, the PAM based receivers perform well in the presence of a large frequency offset (on the order of the symbol rate) and are, in general, much more resistant to small carrier frequency variations compared to conventional CPM receivers. We use an existing PAM based frequency difference detector (FDD) for a large carrier frequency recovery. As such, the proposed method of combining the error detectors (FDD, TED and PED) provides important synchronization components for jointly recovering the respective signal attribute offsets (i.e, carrier frequency, symbol timing and carrier phase) for reduced-complexity PAM based CPM receivers, which have been missing up to this point

    Nouvelle forme d'onde et récepteur avancé pour la télémesure des futurs lanceurs

    Get PDF
    Les modulations Ă  phase continue (CPMs) sont des mĂ©thodes de modulations robuste Ă  la noncohĂ©rence du canal de propagation. Dans un contexte spatial, les CPM sont utilisĂ©es dans la chaĂźne de transmission de tĂ©lĂ©mesure de la fusĂ©e. Depuis les annĂ©es 70, la modulation la plus usitĂ©e dans les systĂšmes de tĂ©lĂ©mesures est la modulation CPFSK continuous phase frequency shift keying filtrĂ©e. Historiquement, ce type de modulation est concatĂ©nĂ©e avec un code ReedSolomon (RS) afin d'amĂ©liorer le processus de dĂ©codage. CĂŽtĂ© rĂ©cepteur, les sĂ©quences CPM non-cohĂ©rentes sont dĂ©modulĂ©es par un dĂ©tecteur Viterbi Ă  sortie dure et un dĂ©codeur RS. NĂ©anmoins, le gain du code RS n'est pas aussi satisfaisant que des techniques de codage moderne capables d'atteindre la limite de Shannon. Actualiser la chaĂźne de communication avec des codes atteignant la limite de Shannon tels que les codes en graphe creux, implique deremanier l’architecture du rĂ©cepteur usuel pour un dĂ©tecteur Ă  sortie souple. Ainsi, on propose dans cette Ă©tude d' Ă©laborer un dĂ©tecteur treillis Ă  sortie souple pour dĂ©moduler les sĂ©quences CPM non-cohĂ©rentes. Dans un deuxiĂšme temps, on concevra des schĂ©mas de prĂ©-codages amĂ©liorant le comportement asymptotique du rĂ©cepteur non-cohĂ©rent et dans une derniĂšre Ă©tape on Ă©labora des codes de paritĂ© Ă  faible densitĂ© (LDPC) approchant la limite de Shannon

    Étude de Techniques de RĂ©ception des Modulations de FrĂ©quence pour la TĂ©lĂ©mesure AĂ©ronautique

    Get PDF
    This dissertation is organized as follows.We remind in Chapter 1 the CPM model and we define its main parameters. We then describe the different aeronautical telemetry modulations and we highlight how the spectral efficiency is achieved for each modulation. We then focus on SOQPSK and we present the state of the art representations and approximations of this signal (i.e, the PAM decomposition and the XTCQM representation as well as their respective approximations).In Chapter 2, we first introduce a new vision of the precoder structure by decomposing it into two different stages: the first stage is a recursive encoder and the second one is a duobinary encoder. We then exploit this new vision to develop a new PAM decomposition ofduobinary encoded CPM and we apply the obtained results to SOQPSK. We also establish in this chapter a link between the proposed PAM decomposition (DBD) of SOQPSK and its XTCQM representation as well its OQPSK interpretation. Furthermore, we detail the exactrole of each stage that constitutes the SOQPSK precoder.In Chapter 3, we build several detection architectures as a direct consequence of proposing a new PAM decomposition. We take advantage of several approaches of the literature. Some rely on the CPM definition of SOQPSK and then exploit the PAM decomposition (Kaleh approach and others use the proposed "linearized" model of SOQPSK (Ungerboeck approach and Forney approach). A complexity study of all the proposed detectors is also carried in this chapter.In Chapter 4, we consider the presence of multipath in the SISO scenario. We first make a classification of the existing aeronautical telemetry channels of the literature. We then present the CMA solution and its different variants. We later propose a new joint channel estimation and detection algorithm for SOQPSK-TG. This solution is an adapted version of the PSP principle and relies on the proposed PAM decomposition given in Chapter 2.In Chapter 5, we focus on the IRIG standardized transmit diversity scheme that allows resolving the two-antenna problem. After introducing the IRIG standardized encoder structure and the state of the art decoders, we develop two decoding structures and we present their different variants. We then consider the presence of multipath in the STC scenario in the second part of this chapter, and we detail the derivation of the new multipath estimator. The results given in Chapter 5 show that the performance of proposed decoders are angle dependent due to employing the standardized scheme. For this reason, we propose in Chapter 6 a new encoding scheme that almost eliminates this angle dependency. Moreover, the scheme ameliorates the transmission rate and allows further complexity reduction of the decoding algorithm. In the second part of this chapter, we highlight that space-time coding is not the only way to overcome the two-antenna problem. We show that sending a SOQPSK-TG signal over one antenna and its artificially delayed copy over the other can also greatly reduce their mutual interference. After determining the necessary delay that should be applied, we show that the proposed interference mitigation technique given in Chapter 4 can also be used in this scenario. Thus, the same receiver architecture can be employed whether one or two antennas are mounted on the aircraft using this approach.Cette thĂšse s’est dĂ©roulĂ©e dans le cadre d’une convention CIFRE avec Zodiac Data Systems (Groupe Zodiac Aerospace). Elle porte sur les techniques de traitement du signal utilisĂ©es Ă  la rĂ©ception pour les systĂšmes de tĂ©lĂ©mesure aĂ©ronautique. En tĂ©lĂ©mesure, les donnĂ©es sont modulĂ©es avec une modulation de frĂ©quence mono-porteuse Ă  enveloppe complexe constante (CPM : Continuous Phase Modulation). Ces modulations sont standardisĂ©es dans une recommandation qui s’appelle l’IRG et dans la thĂšse on s’intĂ©resse Ă  la modulation SOQPSK-TG (Shaped Offset Quadrature Phase Shift Keying- Tier Generation) qui commence Ă  remplacer la modulation classique PCM/FM (Pulse Code Modulation/ Frequency Modulation). La modulation SOQPSK ressemble Ă  une modulation MSK (Comme la GMSK par exemple), cependant sa particularitĂ© rĂ©side dans la nature des alphabets transmis qui sont ternaires et non pas binaires. De plus, comme tout autre CPM, la modulation SOQPSK n’est pas une fonction linĂ©aire des symboles transmis contrairement aux modulations linĂ©aires de type M-PSK (M-ary Phase Shift Keying) ou M-PAM (M-ary Pulse Amplitude Modulation). Toutes ces contraintes rendent la manipulation mathĂ©matique de ce type de signaux complexe et l’application des diffĂ©rents algorithmes de traitement du signal dĂ©crits dans la littĂ©rature non Ă©vidente. Afin de relĂącher les contraintes mentionnĂ©es prĂ©cĂ©demment, nous nous sommes penchĂ©s sur le problĂšme de linĂ©arisation du signal, c’est Ă  dire, trouver une reprĂ©sentation alternative du signal permettant de le considĂ©rer comme une fonction linĂ©aire des symboles transmis. Ceci peut ĂȘtre fait grĂące Ă  la dĂ©composition de Laurent qui permet d’exprimer un signal CPM binaire comme une somme de modulations linĂ©aires. A l’issue de cette Ă©tude, on a rĂ©ussi Ă  trouver une dĂ©composition alternative Ă  celle dĂ©crite dans l’état de l’art. Ce travail a fait l’objet d’un article de journal publiĂ© (IEEE Transaction on Communication). Le rĂ©sultat obtenu Ă  la fin de la premiĂšre annĂ©e de thĂšse Ă©tait trĂšs important pour la suite de la thĂšse car il Ă©tablit une passerelle entre les modulations linĂ©aires et la modulation SOQPSK, ce qui nous a permis d’adapter les diffĂ©rents algorithmes de dĂ©modulation et d’estimation du canal dĂ©crits dans la littĂ©rature Ă  notre cas de figure.A l’issue de la linĂ©arisation du signal, diffĂ©rentes architectures de dĂ©modulation ont Ă©tĂ© dĂ©veloppĂ©es et comparĂ©es en terme de performance/ complexitĂ©. Ensuite une Ă©tude bibliographique a Ă©tĂ© faite sur les diffĂ©rentes architectures d’estimation du canal. Compte tenu de la nature de la modulation Ă©tudiĂ©e et des contraintes imposĂ©es par le standard IRIG, le choix s’est penchĂ© sur une architecture permettant de faire une estimation conjointe du canal et des symboles Ă©mis, appelĂ©e PSP (Per-Survivor Processing). Les diffĂ©rentes simulations sur des canaux aĂ©ronautiques ont montrĂ© la robustesse de cette architecture face aux multi-trajets et face au Doppler.Toute l’étude qui a Ă©tĂ© faite lors des deux premiĂšres annĂ©es de thĂšse considĂšre le cas SISO (Single Input Single Output). NĂ©anmoins, Afin de garantir une liaison de donnĂ©es permanente, deux antennes sont installĂ©es Ă  bord de l’aĂ©ronef et sĂ©parĂ©es pour couvrir une zone de rayonnement diffĂ©rente. Comme ces deux antennes transmettent le mĂȘme signal et sont sĂ©parĂ©es d’une distance supĂ©rieure Ă  la longueur d’onde, le diagramme de rayonnement fait apparaĂźtre de nombreux lobes, crĂ©Ă©s par alternance d’une addition constructive (en phase) ou destructive (en opposition de phase) des deux signaux. Ce phĂ©nomĂšne engendre une rupture du lien de tĂ©lĂ©mesure dans certaines directions et polarisations. Il est appelĂ© «two antennas problem» par la littĂ©rature anglo-saxonne de tĂ©lĂ©mesure aĂ©ronautique. Une solution pour rĂ©pondre Ă  ce problĂšme, est de gĂ©nĂ©rer sur chaque antenne des signaux Ă  la mĂȘme frĂ©quence et au mĂȘme rythme mais qui sont quasi-orthogonaux et donc interfĂšrent peu. La technique la plus rĂ©pandue pour ce faire est le codage spatio-temporel (STBC =Space Time Block Coding) dit d’Alamouti qui consiste Ă  crĂ©er deux sĂ©quences binaires modulantes conçues de telle façon que leur inter-corrĂ©lation complexe pour les symboles d’indices pairs et impairs consĂ©cutifs soient opposĂ©e. Cette solution est standardisĂ©e dans les normes de tĂ©lĂ©mesure aĂ©ronautique, cependant sa mise en place n’est pas aussi Ă©vidente surtout au niveau du rĂ©cepteur Ă  cause de la nature du signal utilisĂ© (SOQPSK-TG). Nous nous sommes intĂ©ressĂ©s en 3Ăšme annĂ©e de la thĂšse Ă  dĂ©velopper des architectures de dĂ©codage du signal en prĂ©sence du codage Alamouti. Ceci fait l’objet d’un brevet en cours de dĂ©pĂŽt
    corecore