3 research outputs found

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Joint Beamforming and User Selection in Multiuser Collaborative MIMO SWIPT Systems with Nonnegligible Circuit Energy Consumption

    Full text link
    © 1967-2012 IEEE. Multiantenna beamforming has potential to improve the efficiency of simultaneous wireless information and power transfer (SWIPT). Existing designs are focused on the downlink of multiple-input-single-output under the assumption of single-antenna users and negligible energy consumption in users' circuitry, despite the fact that using multiple antennas on the user side can further improve system efficiency. In this paper, novel multiuser collaborative multiple-input multiple-output SWIPT systems are studied under the assumption of nonnegligible circuit energy consumption. Particularly, we convexify and maximize the uplink sum rate of active users, while maintaining the quality of service of their downlink data. The beamformers and durations of both links, and the power splitting factors of individual users are jointly optimized, using semidefinite programming and golden search. Further, the selection of active users is optimized, where all users are assumed to be active in the beginning and those detrimental to the sum-rate maximization are continually deactivated. Evident from simulations, the proposed approaches can eliminate the need for computationally prohibitive combinatorial integer programming at a marginal cost of the sum rate
    corecore