29 research outputs found

    Precoding Method Interference Management for Quasi-EVD Channel

    Get PDF
    The Cholesky decomposition-block diagonalization (CD-BD) interference alignment (IA) for a multiuser multiple input multiple output (MU-MIMO) relay system is proposed, which designs precoders for the multiple access channel (MAC) by employing the singular value decomposition (SVD) as well as the mean square error (MSE) detector for the broadcast Hermitian channel (BHC) taken advantage of in our design. Also, in our proposed CD-BD IA algorithm, the relaying function is made use to restructure the quasieigenvalue decomposition (quasi-EVD) equivalent channel. This approach used for the design of BD precoding matrix can significantly reduce the computational complexity and proposed algorithm can address several optimization criteria, which is achieved by designing the precoding matrices in two steps. In the first step, we use Cholesky decomposition to maximize the sum-of-rate (SR) with the minimum mean square error (MMSE) detection. In the next step, we optimize the system BER performance with the overlap of the row spaces spanned by the effective channel matrices of different users. By iterating the closed form of the solution, we are able not only to maximize the achievable sum-of-rate (ASR), but also to minimize the BER performance at a high signal-to-noise ratio (SNR) region

    Joint Power Splitting and Secure Beamforming Design in the Wireless-powered Untrusted Relay Networks

    Full text link
    In this work, we maximize the secrecy rate of the wireless-powered untrusted relay network by jointly designing power splitting (PS) ratio and relay beamforming with the proposed global optimal algorithm (GOA) and local optimal algorithm (LOA). Different from the literature, artificial noise (AN) sent by the destination not only degrades the channel condition of the eavesdropper to improve the secrecy rate, but also becomes a new source of energy powering the untrusted relay based on PS. Hence, it is of high economic benefits and efficiency to take advantage of AN compared with the literature. Simulation results show that LOA can achieve satisfactory secrecy rate performance compared with that of GOA, but with less computation time.Comment: Submitted to GlobeCom201

    Linear Precoding Designs for Amplify-and-Forward Multiuser Two-Way Relay Systems

    Full text link
    Two-way relaying can improve spectral efficiency in two-user cooperative communications. It also has great potential in multiuser systems. A major problem of designing a multiuser two-way relay system (MU-TWRS) is transceiver or precoding design to suppress co-channel interference. This paper aims to study linear precoding designs for a cellular MU-TWRS where a multi-antenna base station (BS) conducts bi-directional communications with multiple mobile stations (MSs) via a multi-antenna relay station (RS) with amplify-and-forward relay strategy. The design goal is to optimize uplink performance, including total mean-square error (Total-MSE) and sum rate, while maintaining individual signal-to-interference-plus-noise ratio (SINR) requirement for downlink signals. We show that the BS precoding design with the RS precoder fixed can be converted to a standard second order cone programming (SOCP) and the optimal solution is obtained efficiently. The RS precoding design with the BS precoder fixed, on the other hand, is non-convex and we present an iterative algorithm to find a local optimal solution. Then, the joint BS-RS precoding is obtained by solving the BS precoding and the RS precoding alternately. Comprehensive simulation is conducted to demonstrate the effectiveness of the proposed precoding designs.Comment: 13 pages, 12 figures, Accepted by IEEE TW

    Wireless Information and Energy Transfer for Two-Hop Non-Regenerative MIMO-OFDM Relay Networks

    Full text link
    This paper investigates the simultaneous wireless information and energy transfer for the non-regenerative multipleinput multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) relaying system. By considering two practical receiver architectures, we present two protocols, time switchingbased relaying (TSR) and power splitting-based relaying (PSR). To explore the system performance limit, we formulate two optimization problems to maximize the end-to-end achievable information rate with the full channel state information (CSI) assumption. Since both problems are non-convex and have no known solution method, we firstly derive some explicit results by theoretical analysis and then design effective algorithms for them. Numerical results show that the performances of both protocols are greatly affected by the relay position. Specifically, PSR and TSR show very different behaviors to the variation of relay position. The achievable information rate of PSR monotonically decreases when the relay moves from the source towards the destination, but for TSR, the performance is relatively worse when the relay is placed in the middle of the source and the destination. This is the first time to observe such a phenomenon. In addition, it is also shown that PSR always outperforms TSR in such a MIMO-OFDM relaying system. Moreover, the effect of the number of antennas and the number of subcarriers are also discussed.Comment: 16 pages, 12 figures, to appear in IEEE Selected Areas in Communication

    Hybrid Processing Design for Multipair Massive MIMO Relaying with Channel Spatial Correlation

    Get PDF
    Massive multiple-input multiple-output (MIMO) avails of simple transceiver design which can tackle many drawbacks of relay systems in terms of complicated signal processing, latency, and noise amplification. However, the cost and circuit complexity of having one radio frequency (RF) chain dedicated to each antenna element are prohibitive in practice. In this paper, we address this critical issue in amplify-and-forward (AF) relay systems using a hybrid analog and digital (A/D) transceiver structure. More specifically, leveraging the channel long-term properties, we design the analog beamformer which aims to minimize the channel estimation error and remain invariant over a long timescale. Then, the beamforming is completed by simple digital signal processing, i.e., maximum ratio combining/maximum ratio transmission (MRC/MRT) or zero-forcing (ZF) in the baseband domain. We present analytical bounds on the achievable spectral efficiency taking into account the spatial correlation and imperfect channel state information at the relay station. Our analytical results reveal that the hybrid A/D structure with ZF digital processor exploits spatial correlation and offers a higher spectral efficiency compared to the hybrid A/D structure with MRC/MRT scheme. Our numerical results showcase that the hybrid A/D beamforming design captures nearly 95% of the spectral efficiency of a fully digital AF relaying topology even by removing half of the RF chains. It is also shown that the hybrid A/D structure is robust to coarse quantization, and even with 2-bit resolution, the system can achieve more than 93% of the spectral efficiency offered by the same hybrid A/D topology with infinite resolution phase shifters.Comment: 17 pages, 13 figures, to appear in IEEE Transactions on Communication
    corecore