71 research outputs found

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Rate-Splitting for Multi-Antenna Non-Orthogonal Unicast and Multicast Transmission

    Full text link
    In a superimposed unicast and multicast transmission system, one layer of Successive Interference Cancellation (SIC) is required at each receiver to remove the multicast stream before decoding the unicast stream. In this paper, we show that a linearly-precoded Rate-Splitting (RS) strategy at the transmitter can efficiently exploit this existing SIC receiver architecture. By splitting the unicast message into common and private parts and encoding the common parts along with the multicast message into a super-common stream decoded by all users, the SIC is used for the dual purpose of separating the unicast and multicast streams as well as better managing the multi-user interference between the unicast streams. The precoders are designed with the objective of maximizing the Weighted Sum Rate (WSR) of the unicast messages subject to a Quality of Service (QoS) requirement of the multicast message and a sum power constraint. Numerical results show that RS outperforms existing Multi-User Linear-Precoding (MU-LP) and power-domain Non-Orthogonal Multiple Access (NOMA) in a wide range of user deployments (with a diversity of channel directions and channel strengths). Moreover, since one layer of SIC is required to separate the unicast and multicast streams, the performance gain of RS comes without any increase in the receiver complexity compared with MU-LP. Hence, in such non-orthogonal unicast and multicast transmissions, RS provides rate and QoS enhancements at no extra cost for the receivers.Comment: arXiv admin note: text overlap with arXiv:1710.1101

    Two-Layered Superposition of Broadcast/Multicast and Unicast Signals in Multiuser OFDMA Systems

    Full text link
    We study optimal delivery strategies of one common and KK independent messages from a source to multiple users in wireless environments. In particular, two-layered superposition of broadcast/multicast and unicast signals is considered in a downlink multiuser OFDMA system. In the literature and industry, the two-layer superposition is often considered as a pragmatic approach to make a compromise between the simple but suboptimal orthogonal multiplexing (OM) and the optimal but complex fully-layered non-orthogonal multiplexing. In this work, we show that only two-layers are necessary to achieve the maximum sum-rate when the common message has higher priority than the KK individual unicast messages, and OM cannot be sum-rate optimal in general. We develop an algorithm that finds the optimal power allocation over the two-layers and across the OFDMA radio resources in static channels and a class of fading channels. Two main use-cases are considered: i) Multicast and unicast multiplexing when KK users with uplink capabilities request both common and independent messages, and ii) broadcast and unicast multiplexing when the common message targets receive-only devices and KK users with uplink capabilities additionally request independent messages. Finally, we develop a transceiver design for broadcast/multicast and unicast superposition transmission based on LTE-A-Pro physical layer and show with numerical evaluations in mobile environments with multipath propagation that the capacity improvements can be translated into significant practical performance gains compared to the orthogonal schemes in the 3GPP specifications. We also analyze the impact of real channel estimation and show that significant gains in terms of spectral efficiency or coverage area are still available even with estimation errors and imperfect interference cancellation for the two-layered superposition system
    • …
    corecore