3 research outputs found

    Distributed Pricing-Based User Association for Downlink Heterogeneous Cellular Networks

    Full text link
    This paper considers the optimization of the user and base-station (BS) association in a wireless downlink heterogeneous cellular network under the proportional fairness criterion. We first consider the case where each BS has a single antenna and transmits at fixed power, and propose a distributed price update strategy for a pricing-based user association scheme, in which the users are assigned to the BS based on the value of a utility function minus a price. The proposed price update algorithm is based on a coordinate descent method for solving the dual of the network utility maximization problem, and it has a rigorous performance guarantee. The main advantage of the proposed algorithm as compared to the existing subgradient method for price update is that the proposed algorithm is independent of parameter choices and can be implemented asynchronously. Further, this paper considers the joint user association and BS power control problem, and proposes an iterative dual coordinate descent and the power optimization algorithm that significantly outperforms existing approaches. Finally, this paper considers the joint user association and BS beamforming problem for the case where the BSs are equipped with multiple antennas and spatially multiplex multiple users. We incorporate dual coordinate descent with the weighted minimum mean-squared error (WMMSE) algorithm, and show that it achieves nearly the same performance as a computationally more complex benchmark algorithm (which applies the WMMSE algorithm on the entire network for BS association), while avoiding excessive BS handover.Comment: IEEE Journal on Selected Areas in Communications, Special Issue on 5G Communication Systems, June 201

    Fairness and Sum-Rate Maximization via Joint Channel and Power Allocation in Uplink SCMA Networks

    Full text link
    In this work, we consider a sparse code multiple access uplink system, where JJ users simultaneously transmit data over KK subcarriers, such that J>KJ > K, with a constraint on the power transmitted by each user. To jointly optimize the subcarrier assignment and the transmitted power per subcarrier, two new iterative algorithms are proposed, the first one aims to maximize the sum-rate (Max-SR) of the network, while the second aims to maximize the fairness (Max-Min). In both cases, the optimization problem is of the mixed-integer nonlinear programming (MINLP) type, with non-convex objective functions, which are generally not tractable. We prove that both joint allocation problems are NP-hard. To address these issues, we employ a variant of the block successive upper-bound minimization (BSUM) \cite{razaviyayn.2013} framework, obtaining polynomial-time approximation algorithms to the original problem. Moreover, we evaluate the algorithms' robustness against outdated channel state information (CSI), present an analysis of the convergence of the algorithms, and a comparison of the sum-rate and Jain's fairness index of the novel algorithms with three other algorithms proposed in the literature. The Max-SR algorithm outperforms the others in the sum-rate sense, while the Max-Min outperforms them in the fairness sense.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Optimizing Downlink Resource Allocation in Multiuser MIMO Networks via Fractional Programming and the Hungarian Algorithm

    Full text link
    Optimizing the sum-log-utility for the downlink of multi-frequency band, multiuser, multiantenna networks requires joint solutions to the associated beamforming and user scheduling problems through the use of cloud radio access network (CRAN) architecture; optimizing such a network is, however, non-convex and NP-hard. In this paper, we present a novel iterative beamforming and scheduling strategy based on fractional programming and the Hungarian algorithm. The beamforming strategy allows us to iteratively maximize the chosen objective function in a fashion similar to block coordinate ascent. Furthermore, based on the crucial insight that, in the downlink, the interference pattern remains fixed for a given set of beamforming weights, we use the Hungarian algorithm as an efficient approach to optimally schedule users for the given set of beamforming weights. Specifically, this approach allows us to select the best subset of users (amongst the larger set of all available users). Our simulation results show that, in terms of average sum-log-utility, as well as sum-rate, the proposed scheme substantially outperforms both the state-of-the-art multicell weighted minimum mean-squared error (WMMSE) and greedy proportionally fair WMMSE schemes, as well as standard interior-point and sequential quadratic solvers. Importantly, our proposed scheme is also far more computationally efficient than the multicell WMMSE scheme.Comment: Accepted for publication in IEEE Transactions on Wireless Communications (2020
    corecore