2 research outputs found

    Joint Topic Modeling and Factor Analysis of Textual Information and Graded Response Data

    Full text link
    Modern machine learning methods are critical to the development of large-scale personalized learning systems that cater directly to the needs of individual learners. The recently developed SPARse Factor Analysis (SPARFA) framework provides a new statistical model and algorithms for machine learning-based learning analytics, which estimate a learner's knowledge of the latent concepts underlying a domain, and content analytics, which estimate the relationships among a collection of questions and the latent concepts. SPARFA estimates these quantities given only the binary-valued graded responses to a collection of questions. In order to better interpret the estimated latent concepts, SPARFA relies on a post-processing step that utilizes user-defined tags (e.g., topics or keywords) available for each question. In this paper, we relax the need for user-defined tags by extending SPARFA to jointly process both graded learner responses and the text of each question and its associated answer(s) or other feedback. Our purely data-driven approach (i) enhances the interpretability of the estimated latent concepts without the need of explicitly generating a set of tags or performing a post-processing step, (ii) improves the prediction performance of SPARFA, and (iii) scales to large test/assessments where human annotation would prove burdensome. We demonstrate the efficacy of the proposed approach on two real educational datasets

    Joint Analysis of Time-Evolving Binary Matrices and Associated Documents 1

    No full text
    We consider problems for which one has incomplete binary matrices that evolve with time (e.g., the votes of legislators on particular legislation, with each year characterized by a different such matrix). An objective of such analysis is to infer structure and inter-relationships underlying the matrices, here defined by latent features associated with each axis of the matrix. In addition, it is assumed that documents are available for the entities associated with at least one of the matrix axes. By jointly analyzing the matrices and documents, one may be used to inform the other within the analysis, and the model offers the opportunity to predict matrix values (e.g., votes) based only on an associated document (e.g., legislation). The research presented here merges two areas of machine-learning that have previously been investigated separately: incomplete-matrix analysis and topic modeling. The analysis is performed from a Bayesian perspective, with efficient inference constituted via Gibbs sampling. The framework is demonstrated by considering all voting data and available documents (legislation) during the 220-year lifetime of the United States Senate and House of Representatives.
    corecore