159 research outputs found

    Jamming Resistant Receivers for Massive MIMO

    Full text link
    We design jamming resistant receivers to enhance the robustness of a massive MIMO uplink channel against jamming. In the pilot phase, we estimate not only the desired channel, but also the jamming channel by exploiting purposely unused pilot sequences. The jamming channel estimate is used to construct the linear receive filter to reduce impact that jamming has on the achievable rates. The performance of the proposed scheme is analytically and numerically evaluated. These results show that the proposed scheme greatly improves the rates, as compared to conventional receivers. Moreover, the proposed schemes still work well with stronger jamming power.Comment: Accepted in the 42nd IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP2017

    Attacking Massive MIMO Cognitive Radio Networks by Optimized Jamming

    Get PDF
    Massive multiple-input multiple-output (MaMIMO) and cognitive radio networks (CRNs) are two promising technologies for improving spectral efficiency of next-generation wireless communication networks. In this paper, we investigate the problem of physical layer security in the networks that jointly use both technologies, named MaMIMO-CRN. Specifically, to investigate the vulnerability of this network, we design an optimized attacking scenario to MaMIMO-CRNs by a jammer. For having the most adversary effect on the uplink transmission of the legitimate MaMIMO-CRN, we propose an efficient method for power allocation of the jammer. The legitimate network consists of a training and a data transmission phase, and both of these phases are attacked by the jammer using an optimized power split between them. The resulting power allocation problem is non-convex. We thus propose three different efficient methods for solving this problem, and we show that under some assumptions, a closed-form solution can also be obtained. Our results show the vulnerability of the MaMIMO-CRN to an optimized jammer. It is also shown that increasing the number of antennas at the legitimate network does not improve the security of the network

    Sensing-Assisted Receivers for Resilient-By-Design 6G MU-MIMO Uplink

    Full text link
    We address the resilience of future 6G MIMO communications by considering an uplink scenario where multiple legitimate transmitters try to communicate with a base station in the presence of an adversarial jammer. The jammer possesses full knowledge about the system and the physical parameters of the legitimate link, while the base station only knows the UL-channels and the angle-of-arrival (AoA) of the jamming signals. Furthermore, the legitimate transmitters are oblivious to the fact that jamming takes place, thus the burden of guaranteeing resilience falls on the receiver. For this case we derive one optimal jamming strategy that aims to minimize the rate of the strongest user and multiple receive strategies, one based on a lower bound on the achievable signal-to-interference-to-noise-ratio (SINR), one based on a zero-forcing (ZF) design, and one based on a minimum SINR constraint. Numerical studies show that the proposed anti-jamming approaches ensure that the sum rate of the system is much higher than without protection, even when the jammer has considerably more transmit power and even if the jamming signals come from the same direction as those of the legitimate users.Comment: Accepted to 3rd IEEE International Symposium on Joint Communications & Sensin

    Secure Simultaneous Information and Power Transfer for Downlink Multi-user Massive MIMO

    Get PDF
    In this paper, downlink secure transmission in simultaneous information and power transfer (SWIPT) system enabled with massive multiple-input multiple-output (MIMO) is studied. A base station (BS) with a large number of antennas transmits energy and information signals to its intended users, but these signals are also received by an active eavesdropper. The users and eavesdropper employ a power splitting technique to simultaneously decode information and harvest energy. Massive MIMO helps the BS to focus energy to the users and prevent information leakage to the eavesdropper. The harvested energy by each user is employed for decoding information and transmitting uplink pilot signals for channel estimation. It is assumed that the active eavesdropper also harvests energy in the downlink and then contributes during the uplink training phase. Achievable secrecy rate is considered as the performance criterion and a closed-form lower bound for it is derived. To provide secure transmission, the achievable secrecy rate is then maximized through an optimization problem with constraints on the minimum harvested energy by the user and the maximum harvested energy by the eavesdropper. Numerical results show the effectiveness of using massive MIMO in providing physical layer security in SWIPT systems and also show that our closed-form expressions for the secrecy rate are accurate

    Universal MIMO Jammer Mitigation via Secret Temporal Subspace Embeddings

    Full text link
    MIMO processing enables jammer mitigation through spatial filtering, provided that the receiver knows the spatial signature of the jammer interference. Estimating this signature is easy for barrage jammers that transmit continuously and with static signature, but difficult for more sophisticated jammers: Smart jammers may deliberately suspend transmission when the receiver tries to estimate their spatial signature, they may use time-varying beamforming to continuously change their spatial signature, or they may stay mostly silent and jam only specific instants (e.g., transmission of control signals). To deal with such smart jammers, we propose MASH, the first method that indiscriminately mitigates all types of jammers: Assume that the transmitter and receiver share a common secret. Based on this secret, the transmitter embeds (with a linear time-domain transform) its signal in a secret subspace of a higher-dimensional space. The receiver applies a reciprocal linear transform to the receive signal, which (i) raises the legitimate transmit signal from its secret subspace and (ii) provably transforms any jammer into a barrage jammer, which makes estimation and mitigation via MIMO processing straightforward. We show the efficacy of MASH for data transmission in the massive multi-user MIMO uplink.Comment: submitted to Asilomar 202
    corecore