392,085 research outputs found
Structural Origins of Conductance Fluctuations in Gold-Thiolate Molecular Transport Junctions
We report detailed atomistic simulations combined with high-fidelity
conductance calculations to probe the structural origins of conductance
fluctuations in thermally evolving Au-benzene-1,4-dithiolate-Au junctions. We
compare the behavior of structurally ideal junctions (electrodes with flat
surfaces) to structurally realistic, experimentally representative junctions
resulting from break junction simulations. The enhanced mobility of metal atoms
in structurally realistic junctions results in significant changes to the
magnitude and origin of the conductance fluctuations. Fluctuations are larger
by a factor of 2-3 in realistic junctions compared to ideal junctions.
Moreover, in junctions with highly deformed electrodes, the conductance
fluctuations arise primarily from changes in the Au geometry, in contrast to
results for junctions with non-deformed electrodes, where the conductance
fluctuations are dominated by changes in the molecule geometry. These results
provide important guidance to experimentalists developing strategies to control
molecular conductance for device applications, and also to theoreticians
invoking simplified structural models of junctions to predict their behavior.Comment: 15 pages, 4 figures, to appear in Journal of Physical Chemistry
Letter
Gravitational Wave Bursts from Cosmic Superstrings with Y-junctions
Cosmic superstring loops generically contain strings of different tensions
that meet at Y-junctions. These loops evolve non-periodically in time, and have
cusps and kinks that interact with the junctions. We study the effect of
junctions on the gravitational wave signal emanating from cosmic string cusps
and kinks. We find that earlier results on the strength of individual bursts
from cusps and kinks on strings without junctions remain largely unchanged, but
junctions give rise to additional contributions to the gravitational wave
signal coming from strings expanding at the speed of light at a junction and
kinks passing through a junction.Comment: 20 pages, 5 figure
The structural organization and protein composition of lens fiber junctions.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined
Loss and reappearance of gap junctions in regenerating liver
Changes in intercellular junctional morphology associated with rat liver regeneration were examined in a freeze-fracture study. After a two-thirds partial hepatectomy, both gap junctions and zonulae occludentes were drastically altered. Between 0 and 20 h after partial hepatectomy, the junctions appeared virtually unchanged. 28 h after partial hepatectomy, however, the large gap junctions usually located close to the bile canaliculi and the small gap junctions enmeshed within the strands of the zonulae occudentes completely disappeared. Although the zonulae occludentes bordering the bile canaliculi apparently remained intact, numerous strands could now be found oriented perpendicular to the canaliculi. In some instances, the membrane outside the canaliculi was extensively filled with isolated junctional strands, often forming very complex configurations. About 40 h after partial hepatectomy, very many small gap junctions reappeared in close association with the zonulae occludentes. Subsequently, gap junctions increased in size and decreased in number until about 48 h after partial hepatectomy when gap junctions were indistinguishable in size and number from those of control animals. The zonulae occludentes were again predominantly located around the canalicular margins. These studies provide further evidence for the growth of gap junctions by the accretion of particles and of small gap junctions to form large maculae
High-Tc ramp-type Josephson junctions on MgO substrates for Terahertz applications
The authors successfully fabricated high-Tc ramp-type junctions with PrBa2Cu3-xGaxO7-δ (PBCGO: x=0.1, 0.4) barriers on MgO substrates. The junctions showed resistively shunted Josephson junction (RSJ)-like I-V curves with thermally and voltage activated conductivity. The IcRn products for these junctions scaled very well with the Ga-doping. Maximum response of the junctions for 100-GHz millimeter-wave irradiation could be observed up to 12 mV corresponding to 6 THz. Using far infrared laser radiation, we confirmed a terahertz (THz) response of these junctions. These results show promise for THz-wave applications of ramp-type Josephson junctions
Comparative Analysis of the Major Polypeptides from Liver Gap Junctions and Lens Fiber Junctions
Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties
Stacked Josephson junction SQUID
Operation of a Superconducting Quantum Interference Device (SQUID) made of
stacked Josephson junctions is analyzed numerically for a variety of junction
parameters. Due to a magnetic coupling of junctions in the stack, such a SQUID
has certain advantages as compared to an uncoupled multi-junction SQUID.
Namely, metastability of current-flux modulation can be reduced and a
voltage-flux modulation can be improved if junctions in the stack are
phase-locked. Optimum operation of the SQUID is expected for moderately long,
strongly coupled stacked Josephson junctions. A possibility of making a stacked
Josephson junction SQUID based on intrinsic Josephson junctions in high-Tc
superconductor is discussed.Comment: 4 pages, 3 figures, presented at SQUID-2001 (Stenungsbaden September
2001
Synchronization in disordered Josephson junction arrays: Small-world connections and the Kuramoto model
We study synchronization in disordered arrays of Josephson junctions. In the
first half of the paper, we consider the relation between the coupled
resistively- and capacitively shunted junction (RCSJ) equations for such arrays
and effective phase models of the Winfree type. We describe a multiple-time
scale analysis of the RCSJ equations for a ladder array of junctions
\textit{with non-negligible capacitance} in which we arrive at a second order
phase model that captures well the synchronization physics of the RCSJ
equations for that geometry. In the second half of the paper, motivated by
recent work on small world networks, we study the effect on synchronization of
random, long-range connections between pairs of junctions. We consider the
effects of such shortcuts on ladder arrays, finding that the shortcuts make it
easier for the array of junctions in the nonzero voltage state to synchronize.
In 2D arrays we find that the additional shortcut junctions are only marginally
effective at inducing synchronization of the active junctions. The differences
in the effects of shortcut junctions in 1D and 2D can be partly understood in
terms of an effective phase model.Comment: 31 pages, 21 figure
- …
