1,598 research outputs found

    Compressive X-ray phase tomography based on the transport of intensity equation

    Full text link
    We develop and implement a compressive reconstruction method for tomographic recovery of refractive index distribution for weakly attenuating objects in a microfocus X-ray system. This is achieved through the development of a discretized operator modeling both the transport of intensity equation and X-ray transform that is suitable for iterative reconstruction techniques

    Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    Get PDF
    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented.Comment: Resubmitted to Physics in Medicine and Biology. Text has been modified according to referee comments, and typos in the equations have been correcte

    Fast Stochastic Hierarchical Bayesian MAP for Tomographic Imaging

    Full text link
    Any image recovery algorithm attempts to achieve the highest quality reconstruction in a timely manner. The former can be achieved in several ways, among which are by incorporating Bayesian priors that exploit natural image tendencies to cue in on relevant phenomena. The Hierarchical Bayesian MAP (HB-MAP) is one such approach which is known to produce compelling results albeit at a substantial computational cost. We look to provide further analysis and insights into what makes the HB-MAP work. While retaining the proficient nature of HB-MAP's Type-I estimation, we propose a stochastic approximation-based approach to Type-II estimation. The resulting algorithm, fast stochastic HB-MAP (fsHBMAP), takes dramatically fewer operations while retaining high reconstruction quality. We employ our fsHBMAP scheme towards the problem of tomographic imaging and demonstrate that fsHBMAP furnishes promising results when compared to many competing methods.Comment: 5 Pages, 4 Figures, Conference (Accepted to Asilomar 2017

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation

    Deep learning in computational microscopy

    Full text link
    We propose to use deep convolutional neural networks (DCNNs) to perform 2D and 3D computational imaging. Specifically, we investigate three different applications. We first try to solve the 3D inverse scattering problem based on learning a huge number of training target and speckle pairs. We also demonstrate a new DCNN architecture to perform Fourier ptychographic Microscopy (FPM) reconstruction, which achieves high-resolution phase recovery with considerably less data than standard FPM. Finally, we employ DCNN models that can predict focused 2D fluorescent microscopic images from blurred images captured at overfocused or underfocused planes.Published versio
    corecore