17,202 research outputs found

    Information-Theoretic Stochastic Optimal Control via Incremental Sampling-based Algorithms

    Get PDF
    This paper considers optimal control of dynamical systems which are represented by nonlinear stochastic differential equations. It is well-known that the optimal control policy for this problem can be obtained as a function of a value function that satisfies a nonlinear partial differential equation, namely, the Hamilton-Jacobi-Bellman equation. This nonlinear PDE must be solved backwards in time, and this computation is intractable for large scale systems. Under certain assumptions, and after applying a logarithmic transformation, an alternative characterization of the optimal policy can be given in terms of a path integral. Path Integral (PI) based control methods have recently been shown to provide elegant solutions to a broad class of stochastic optimal control problems. One of the implementation challenges with this formalism is the computation of the expectation of a cost functional over the trajectories of the unforced dynamics. Computing such expectation over trajectories that are sampled uniformly may induce numerical instabilities due to the exponentiation of the cost. Therefore, sampling of low-cost trajectories is essential for the practical implementation of PI-based methods. In this paper, we use incremental sampling-based algorithms to sample useful trajectories from the unforced system dynamics, and make a novel connection between Rapidly-exploring Random Trees (RRTs) and information-theoretic stochastic optimal control. We show the results from the numerical implementation of the proposed approach to several examples.Comment: 18 page

    Parallel ADMM for robust quadratic optimal resource allocation problems

    Full text link
    An alternating direction method of multipliers (ADMM) solver is described for optimal resource allocation problems with separable convex quadratic costs and constraints and linear coupling constraints. We describe a parallel implementation of the solver on a graphics processing unit (GPU) using a bespoke quartic function minimizer. An application to robust optimal energy management in hybrid electric vehicles is described, and the results of numerical simulations comparing the computation times of the parallel GPU implementation with those of an equivalent serial implementation are presented

    Topology-Guided Path Integral Approach for Stochastic Optimal Control in Cluttered Environment

    Full text link
    This paper addresses planning and control of robot motion under uncertainty that is formulated as a continuous-time, continuous-space stochastic optimal control problem, by developing a topology-guided path integral control method. The path integral control framework, which forms the backbone of the proposed method, re-writes the Hamilton-Jacobi-Bellman equation as a statistical inference problem; the resulting inference problem is solved by a sampling procedure that computes the distribution of controlled trajectories around the trajectory by the passive dynamics. For motion control of robots in a highly cluttered environment, however, this sampling can easily be trapped in a local minimum unless the sample size is very large, since the global optimality of local minima depends on the degree of uncertainty. Thus, a homology-embedded sampling-based planner that identifies many (potentially) local-minimum trajectories in different homology classes is developed to aid the sampling process. In combination with a receding-horizon fashion of the optimal control the proposed method produces a dynamically feasible and collision-free motion plans without being trapped in a local minimum. Numerical examples on a synthetic toy problem and on quadrotor control in a complex obstacle field demonstrate the validity of the proposed method.Comment: arXiv admin note: text overlap with arXiv:1510.0534

    Constrained optimal control theory for differential linear repetitive processes

    No full text
    Differential repetitive processes are a distinct class of continuous-discrete two-dimensional linear systems of both systems theoretic and applications interest. These processes complete a series of sweeps termed passes through a set of dynamics defined over a finite duration known as the pass length, and once the end is reached the process is reset to its starting position before the next pass begins. Moreover the output or pass profile produced on each pass explicitly contributes to the dynamics of the next one. Applications areas include iterative learning control and iterative solution algorithms, for classes of dynamic nonlinear optimal control problems based on the maximum principle, and the modeling of numerous industrial processes such as metal rolling, long-wall cutting, etc. In this paper we develop substantial new results on optimal control of these processes in the presence of constraints where the cost function and constraints are motivated by practical application of iterative learning control to robotic manipulators and other electromechanical systems. The analysis is based on generalizing the well-known maximum and ϵ\epsilon-maximum principles to the
    • …
    corecore