458 research outputs found

    Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors

    Full text link
    We present a scalable Bayesian model for low-rank factorization of massive tensors with binary observations. The proposed model has the following key properties: (1) in contrast to the models based on the logistic or probit likelihood, using a zero-truncated Poisson likelihood for binary data allows our model to scale up in the number of \emph{ones} in the tensor, which is especially appealing for massive but sparse binary tensors; (2) side-information in form of binary pairwise relationships (e.g., an adjacency network) between objects in any tensor mode can also be leveraged, which can be especially useful in "cold-start" settings; and (3) the model admits simple Bayesian inference via batch, as well as \emph{online} MCMC; the latter allows scaling up even for \emph{dense} binary data (i.e., when the number of ones in the tensor/network is also massive). In addition, non-negative factor matrices in our model provide easy interpretability, and the tensor rank can be inferred from the data. We evaluate our model on several large-scale real-world binary tensors, achieving excellent computational scalability, and also demonstrate its usefulness in leveraging side-information provided in form of mode-network(s).Comment: UAI (Uncertainty in Artificial Intelligence) 201

    Knowledge Graph Completion via Complex Tensor Factorization

    Get PDF
    In statistical relational learning, knowledge graph completion deals with automatically understanding the structure of large knowledge graphs—labeled directed graphs—and predicting missing relationships—labeled edges. State-of-the-art embedding models propose different trade-offs between modeling expressiveness, and time and space complexity. We reconcile both expressiveness and complexity through the use of complex-valued embeddings and explore the link between such complex-valued embeddings and unitary diagonalization. We corroborate our approach theoretically and show that all real square matrices—thus all possible relation/adjacency matrices—are the real part of some unitarily diagonalizable matrix. This results opens the door to a lot of other applications of square matrices factorization. Our approach based on complex embeddings is arguably simple, as it only involves a Hermitian dot product, the complex counterpart of the standard dot product between real vectors, whereas other methods resort to more and more complicated composition functions to increase their expressiveness. The proposed complex embeddings are scalable to large data sets as it remains linear in both space and time, while consistently outperforming alternative approaches on standard link prediction benchmarks

    Let's Make Block Coordinate Descent Go Fast: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence

    Full text link
    Block coordinate descent (BCD) methods are widely-used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can lead to significantly faster BCD methods. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with a sparse dependency between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization

    Performance Portable Solid Mechanics via Matrix-Free pp-Multigrid

    Full text link
    Finite element analysis of solid mechanics is a foundational tool of modern engineering, with low-order finite element methods and assembled sparse matrices representing the industry standard for implicit analysis. We use performance models and numerical experiments to demonstrate that high-order methods greatly reduce the costs to reach engineering tolerances while enabling effective use of GPUs. We demonstrate the reliability, efficiency, and scalability of matrix-free pp-multigrid methods with algebraic multigrid coarse solvers through large deformation hyperelastic simulations of multiscale structures. We investigate accuracy, cost, and execution time on multi-node CPU and GPU systems for moderate to large models using AMD MI250X (OLCF Crusher), NVIDIA A100 (NERSC Perlmutter), and V100 (LLNL Lassen and OLCF Summit), resulting in order of magnitude efficiency improvements over a broad range of model properties and scales. We discuss efficient matrix-free representation of Jacobians and demonstrate how automatic differentiation enables rapid development of nonlinear material models without impacting debuggability and workflows targeting GPUs
    • …
    corecore