3 research outputs found

    Indoor trajectory identification: Snapping with uncertainty

    Full text link
    Abstract — We consider the problem of indoor human tra-jectory identification using odometry data from smartphone sensors. Given a segmented trajectory, a simplified map of the environment, and a set of error thresholds, we implement a map-matching algorithm in a urban setting and analyze the accuracy of the resulting path. We also discuss aggregation of user step data into a segmented trajectory. Besides providing an interesting application of learning human motion in a constrained environment, we examine how the uncertainty of the snapped trajectory varies with path length. We demonstrate that as new segments are added to a path, the number of pos-sibilities for earlier segments is monotonically non-increasing. Applications of this work in an urban setting are discussed, as well as future plans to develop a formal theory of odometry-based map-matching. I

    Iterative Snapping of Odometry Trajectories for Path Identification

    No full text
    Abstract. An increasing number of mobile devices are capable of automatically sensing and recording rich information about the surrounding environment. Spatial locations of such data can help to better learn about the environment. In this work, we address the problem of identifying the locations visited by a mobile device as it moves within an indoor environment. We focus on devices equipped with odometry sensors that capture changes in motion. Odometry suffers from cumulative errors of dead reckoning but it captures the relative shape of the traversed path well. Our approach will correct such errors by matching the shape of the trajectory from odometry to traversable paths of a known map. Our algorithm is inspired by prior vehicular GPS map matching techniques that snap global GPS measurements to known roads. We similarly wish to snap the trajectory from odometry to known hallways. Several modifications are required to ensure these techniques are robust when given relative measurements from odometry. If we assume an office-like environment with only straight hallways, then a significant rotation indicates a transition to another hallway. As a result, we partition the trajectory into line segments based on significant turns. Each trajectory segment is snapped to a corresponding hallway that best maintains the shape of the original trajectory. These snapping decisions are made based on the similarity of the two curves as well as the rotation to transition between hallways. We will show robustness under different types of noise in complex environments and the ability to propose coarse sensor noise errors.

    Iterative Snapping of Odometry Trajectories for Path Identification

    No full text
    An increasing number of mobile devices are capable of automatically sensing and recording rich information about the surrounding environment. Spatial locations of such data can help to better learn about the environment. In this work, we address the problem of identifying the locations visited by a mobile device as it moves within an indoor environment. We focus on devices equipped with odometry sensors that capture changes in motion. Odometry suffers from cumulative errors of dead reckoning but it captures the relative shape of the traversed path well. Our approach will correct such errors by matching the shape of the trajectory from odometry to traversable paths of a known map. Our algorithm is inspired by prior vehicular GPS map matching techniques that snap global GPS measurements to known roads. We similarly wish to snap the trajectory from odometry to known hallways. Several modifications are required to ensure these techniques are robust when given relative measurements from odometry. If we assume an office-like environment with only straight hallways, then a significant rotation indicates a transition to another hallway. As a result, we partition the trajectory into line segments based on significant turns. Each trajectory segment is snapped to a corresponding hallway that best maintains the shape of the original trajectory. These snapping decisions are made based on the similarity of the two curves as well as the rotation to transition between hallways. We will show robustness under different types of noise in complex environments and the ability to propose coarse sensor noise errors.</p
    corecore