7,453 research outputs found

    Feedback-prop: Convolutional Neural Network Inference under Partial Evidence

    Full text link
    We propose an inference procedure for deep convolutional neural networks (CNNs) when partial evidence is available. Our method consists of a general feedback-based propagation approach (feedback-prop) that boosts the prediction accuracy for an arbitrary set of unknown target labels when the values for a non-overlapping arbitrary set of target labels are known. We show that existing models trained in a multi-label or multi-task setting can readily take advantage of feedback-prop without any retraining or fine-tuning. Our feedback-prop inference procedure is general, simple, reliable, and works on different challenging visual recognition tasks. We present two variants of feedback-prop based on layer-wise and residual iterative updates. We experiment using several multi-task models and show that feedback-prop is effective in all of them. Our results unveil a previously unreported but interesting dynamic property of deep CNNs. We also present an associated technical approach that takes advantage of this property for inference under partial evidence in general visual recognition tasks.Comment: Accepted to CVPR 201

    An ontology enhanced parallel SVM for scalable spam filter training

    Get PDF
    This is the post-print version of the final paper published in Neurocomputing. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.Spam, under a variety of shapes and forms, continues to inflict increased damage. Varying approaches including Support Vector Machine (SVM) techniques have been proposed for spam filter training and classification. However, SVM training is a computationally intensive process. This paper presents a MapReduce based parallel SVM algorithm for scalable spam filter training. By distributing, processing and optimizing the subsets of the training data across multiple participating computer nodes, the parallel SVM reduces the training time significantly. Ontology semantics are employed to minimize the impact of accuracy degradation when distributing the training data among a number of SVM classifiers. Experimental results show that ontology based augmentation improves the accuracy level of the parallel SVM beyond the original sequential counterpart

    Asynchronous Multi-Context Systems

    Full text link
    In this work, we present asynchronous multi-context systems (aMCSs), which provide a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. Systems of this kind may interact with the outside world via input and output streams and may therefore react to a continuous flow of external information. In contrast to recent proposals, contexts in an aMCS communicate with each other in an asynchronous way which fits the needs of many application domains and is beneficial for scalability. The federal semantics of aMCSs renders our framework an integration approach rather than a knowledge representation formalism itself. We illustrate the introduced concepts by means of an example scenario dealing with rescue services. In addition, we compare aMCSs to reactive multi-context systems and describe how to simulate the latter with our novel approach.Comment: International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), co-located with the 21st European Conference on Artificial Intelligence (ECAI 2014). Proceedings of the International Workshop on Reactive Concepts in Knowledge Representation (ReactKnow 2014), pages 31-37, technical report, ISSN 1430-3701, Leipzig University, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-15056

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail

    A Semantic Framework for the Analysis of Privacy Policies

    Get PDF
    corecore