23,461 research outputs found

    Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon

    Full text link
    How to develop slim and accurate deep neural networks has become crucial for real- world applications, especially for those employed in embedded systems. Though previous work along this research line has shown some promising results, most existing methods either fail to significantly compress a well-trained deep network or require a heavy retraining process for the pruned deep network to re-boost its prediction performance. In this paper, we propose a new layer-wise pruning method for deep neural networks. In our proposed method, parameters of each individual layer are pruned independently based on second order derivatives of a layer-wise error function with respect to the corresponding parameters. We prove that the final prediction performance drop after pruning is bounded by a linear combination of the reconstructed errors caused at each layer. Therefore, there is a guarantee that one only needs to perform a light retraining process on the pruned network to resume its original prediction performance. We conduct extensive experiments on benchmark datasets to demonstrate the effectiveness of our pruning method compared with several state-of-the-art baseline methods

    NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations

    Get PDF
    This paper introduces Non-Autonomous Input-Output Stable Network (NAIS-Net), a very deep architecture where each stacked processing block is derived from a time-invariant non-autonomous dynamical system. Non-autonomy is implemented by skip connections from the block input to each of the unrolled processing stages and allows stability to be enforced so that blocks can be unrolled adaptively to a pattern-dependent processing depth. NAIS-Net induces non-trivial, Lipschitz input-output maps, even for an infinite unroll length. We prove that the network is globally asymptotically stable so that for every initial condition there is exactly one input-dependent equilibrium assuming tanh units, and multiple stable equilibria for ReL units. An efficient implementation that enforces the stability under derived conditions for both fully-connected and convolutional layers is also presented. Experimental results show how NAIS-Net exhibits stability in practice, yielding a significant reduction in generalization gap compared to ResNets.Comment: NIPS 201
    • …
    corecore