15,302 research outputs found

    Beyond Condorcet: Optimal Aggregation Rules Using Voting Records

    Get PDF
    The difficulty of optimal decision making in uncertain dichotomous choice settings is that it requires information on the expertise of the decision makers (voters). This paper presents a method of optimally weighting voters even without testing them against questions with known right answers. The method is based on the realization that if we can see how voters vote on a variety of questions, it is possible to gauge their respective degrees of expertise by comparing their votes in a suitable fashion, even without knowing the right answers.

    Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

    Get PDF
    Crowdsourcing systems commonly face the problem of aggregating multiple judgments provided by potentially unreliable workers. In addition, several aspects of the design of efficient crowdsourcing processes, such as defining worker's bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. Bringing this together, in this work we introduce a new time--sensitive Bayesian aggregation method that simultaneously estimates a task's duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, builds on the key insight that the time taken by a worker to perform a task is an important indicator of the likely quality of the produced judgment. To capture this, BCCTime uses latent variables to represent the uncertainty about the workers' completion time, the tasks' duration and the workers' accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labeling, such as spammers, bots or lazy labelers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labeling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real-world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task's duration compared to state-of-the-art methods

    Beyond Condorcet: Optimal Aggregation Rules Using Voting Records

    Get PDF
    In certain judgmental situations where a “correct” decision is presumed to exist, optimal decision making requires evaluation of the decision-maker's capabilities and the selection of the appropriate aggregation rule. The major and so far unresolved difficulty is the former necessity. This paper presents the optimal aggregation rule that simultaneously satisfies these two interdependent necessary requirements. In our setting, some record of the voters' past decisions is available, but the correct decisions are not known. We observe that any arbitrary evaluation of the decision-maker's capabilities as probabilities yields some optimal aggregation rule that, in turn, yields a maximum-likelihood estimation of decisional skills. Thus, a skill-evaluation equilibrium can be defined as an evaluation of decisional skills that yields itself as a maximum-likelihood estimation of decisional skills. We show that such equilibrium exists and offer a procedure for finding one. The obtained equilibrium is locally optimal and is shown empirically to generally be globally optimal in terms of the correctness of the resulting collective decisions. Interestingly, under minimally competent (almost symmetric) skill distributions that allow unskilled decision makers, the optimal rule considerably outperforms the common simple majority rule (SMR). Furthermore, a sufficient record of past decisions ensures that the collective probability of making a correct decision converges to 1, as opposed to accuracy of about 0.7 under SMR. Our proposed optimal voting procedure relaxes the fundamental (and sometimes unrealistic) assumptions in Condorcet celebrated theorem and its extensions, such as sufficiently high decision-making quality, skill homogeneity or existence of a sufficiently large group of decision makers.

    Manipulation in Group Argument Evaluation.

    Get PDF
    Given an argumentation framework and a group of agents, the individuals may have divergent opinions on the status of the arguments. If the group needsto reach a common position on the argumentation framework, the question is how the individual evaluations can be mapped into a collective one. Thisproblem has been recently investigated by Caminada and Pigozzi. In this paper, we investigate the behaviour of two of such operators from a socialchoice-theoretic point of view. In particular, we study under which conditions these operators are Pareto optimal and whether they are manipulable.Social choice theory; Judgment aggregation; Argumentation; Collective decision making;
    corecore