49,963 research outputs found

    Strong Sure Screening of Ultra-high Dimensional Categorical Data

    Full text link
    Feature screening for ultra high dimensional feature spaces plays a critical role in the analysis of data sets whose predictors exponentially exceed the number of observations. Such data sets are becoming increasingly prevalent in areas such as bioinformatics, medical imaging, and social network analysis. Frequently, these data sets have both categorical response and categorical covariates, yet extant feature screening literature rarely considers such data types. We propose a new screening procedure rooted in the Cochran-Armitage trend test. Our method is specifically applicable for data where both the response and predictors are categorical. Under a set of reasonable conditions, we demonstrate that our screening procedure has the strong sure screening property, which extends the seminal results of Fan and Lv. A series of four simulations are used to investigate the performance of our method relative to three other screening methods. We also apply a two-stage iterative approach to a real data example by first employing our proposed method, and then further screening a subset of selected covariates using lasso, adaptive-lasso and elastic net regularization.Comment: Preprint of Draf

    Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier

    Full text link
    Multiview learning problem refers to the problem of learning a classifier from multiple view data. In this data set, each data points is presented by multiple different views. In this paper, we propose a novel method for this problem. This method is based on two assumptions. The first assumption is that each data point has an intact feature vector, and each view is obtained by a linear transformation from the intact vector. The second assumption is that the intact vectors are discriminative, and in the intact space, we have a linear classifier to separate the positive class from the negative class. We define an intact vector for each data point, and a view-conditional transformation matrix for each view, and propose to reconstruct the multiple view feature vectors by the product of the corresponding intact vectors and transformation matrices. Moreover, we also propose a linear classifier in the intact space, and learn it jointly with the intact vectors. The learning problem is modeled by a minimization problem, and the objective function is composed of a Cauchy error estimator-based view-conditional reconstruction term over all data points and views, and a classification error term measured by hinge loss over all the intact vectors of all the data points. Some regularization terms are also imposed to different variables in the objective function. The minimization problem is solve by an iterative algorithm using alternate optimization strategy and gradient descent algorithm. The proposed algorithm shows it advantage in the compression to other multiview learning algorithms on benchmark data sets

    Robust and Discriminative Labeling for Multi-label Active Learning Based on Maximum Correntropy Criterion

    Full text link
    Multi-label learning draws great interests in many real world applications. It is a highly costly task to assign many labels by the oracle for one instance. Meanwhile, it is also hard to build a good model without diagnosing discriminative labels. Can we reduce the label costs and improve the ability to train a good model for multi-label learning simultaneously? Active learning addresses the less training samples problem by querying the most valuable samples to achieve a better performance with little costs. In multi-label active learning, some researches have been done for querying the relevant labels with less training samples or querying all labels without diagnosing the discriminative information. They all cannot effectively handle the outlier labels for the measurement of uncertainty. Since Maximum Correntropy Criterion (MCC) provides a robust analysis for outliers in many machine learning and data mining algorithms, in this paper, we derive a robust multi-label active learning algorithm based on MCC by merging uncertainty and representativeness, and propose an efficient alternating optimization method to solve it. With MCC, our method can eliminate the influence of outlier labels that are not discriminative to measure the uncertainty. To make further improvement on the ability of information measurement, we merge uncertainty and representativeness with the prediction labels of unknown data. It can not only enhance the uncertainty but also improve the similarity measurement of multi-label data with labels information. Experiments on benchmark multi-label data sets have shown a superior performance than the state-of-the-art methods

    Nonparametric Independence Screening via Favored Smoothing Bandwidth

    Full text link
    We propose a flexible nonparametric regression method for ultrahigh-dimensional data. As a first step, we propose a fast screening method based on the favored smoothing bandwidth of the marginal local constant regression. Then, an iterative procedure is developed to recover both the important covariates and the regression function. Theoretically, we prove that the favored smoothing bandwidth based screening possesses the model selection consistency property. Simulation studies as well as real data analysis show the competitive performance of the new procedure.Comment: 22 page

    Deep Part Induction from Articulated Object Pairs

    Full text link
    Object functionality is often expressed through part articulation -- as when the two rigid parts of a scissor pivot against each other to perform the cutting function. Such articulations are often similar across objects within the same functional category. In this paper, we explore how the observation of different articulation states provides evidence for part structure and motion of 3D objects. Our method takes as input a pair of unsegmented shapes representing two different articulation states of two functionally related objects, and induces their common parts along with their underlying rigid motion. This is a challenging setting, as we assume no prior shape structure, no prior shape category information, no consistent shape orientation, the articulation states may belong to objects of different geometry, plus we allow inputs to be noisy and partial scans, or point clouds lifted from RGB images. Our method learns a neural network architecture with three modules that respectively propose correspondences, estimate 3D deformation flows, and perform segmentation. To achieve optimal performance, our architecture alternates between correspondence, deformation flow, and segmentation prediction iteratively in an ICP-like fashion. Our results demonstrate that our method significantly outperforms state-of-the-art techniques in the task of discovering articulated parts of objects. In addition, our part induction is object-class agnostic and successfully generalizes to new and unseen objects

    A Comprehensive Survey on Cross-modal Retrieval

    Full text link
    In recent years, cross-modal retrieval has drawn much attention due to the rapid growth of multimodal data. It takes one type of data as the query to retrieve relevant data of another type. For example, a user can use a text to retrieve relevant pictures or videos. Since the query and its retrieved results can be of different modalities, how to measure the content similarity between different modalities of data remains a challenge. Various methods have been proposed to deal with such a problem. In this paper, we first review a number of representative methods for cross-modal retrieval and classify them into two main groups: 1) real-valued representation learning, and 2) binary representation learning. Real-valued representation learning methods aim to learn real-valued common representations for different modalities of data. To speed up the cross-modal retrieval, a number of binary representation learning methods are proposed to map different modalities of data into a common Hamming space. Then, we introduce several multimodal datasets in the community, and show the experimental results on two commonly used multimodal datasets. The comparison reveals the characteristic of different kinds of cross-modal retrieval methods, which is expected to benefit both practical applications and future research. Finally, we discuss open problems and future research directions.Comment: 20 pages, 11 figures, 9 table

    Unsupervised Multi-modal Hashing for Cross-modal retrieval

    Full text link
    With the advantage of low storage cost and high efficiency, hashing learning has received much attention in the domain of Big Data. In this paper, we propose a novel unsupervised hashing learning method to cope with this open problem to directly preserve the manifold structure by hashing. To address this problem, both the semantic correlation in textual space and the locally geometric structure in the visual space are explored simultaneously in our framework. Besides, the `2;1-norm constraint is imposed on the projection matrices to learn the discriminative hash function for each modality. Extensive experiments are performed to evaluate the proposed method on the three publicly available datasets and the experimental results show that our method can achieve superior performance over the state-of-the-art methods.Comment: 4 pages, 4 figure

    Nasal Patches and Curves for Expression-robust 3D Face Recognition

    Full text link
    The potential of the nasal region for expression robust 3D face recognition is thoroughly investigated by a novel five-step algorithm. First, the nose tip location is coarsely detected and the face is segmented, aligned and the nasal region cropped. Then, a very accurate and consistent nasal landmarking algorithm detects seven keypoints on the nasal region. In the third step, a feature extraction algorithm based on the surface normals of Gabor-wavelet filtered depth maps is utilised and, then, a set of spherical patches and curves are localised over the nasal region to provide the feature descriptors. The last step applies a genetic algorithm-based feature selector to detect the most stable patches and curves over different facial expressions. The algorithm provides the highest reported nasal region-based recognition ranks on the FRGC, Bosphorus and BU-3DFE datasets. The results are comparable with, and in many cases better than, many state-of-the-art 3D face recognition algorithms, which use the whole facial domain. The proposed method does not rely on sophisticated alignment or denoising steps, is very robust when only one sample per subject is used in the gallery, and does not require a training step for the landmarking algorithm. https://github.com/mehryaragha/NoseBiometric

    Sparse Representation Classification Beyond L1 Minimization and the Subspace Assumption

    Full text link
    The sparse representation classifier (SRC) has been utilized in various classification problems, which makes use of L1 minimization and works well for image recognition satisfying a subspace assumption. In this paper we propose a new implementation of SRC via screening, establish its equivalence to the original SRC under regularity conditions, and prove its classification consistency under a latent subspace model and contamination. The results are demonstrated via simulations and real data experiments, where the new algorithm achieves comparable numerical performance and significantly faster.Comment: 15 pages, 4 figures, 3 table

    Relief-Based Feature Selection: Introduction and Review

    Full text link
    Feature selection plays a critical role in biomedical data mining, driven by increasing feature dimensionality in target problems and growing interest in advanced but computationally expensive methodologies able to model complex associations. Specifically, there is a need for feature selection methods that are computationally efficient, yet sensitive to complex patterns of association, e.g. interactions, so that informative features are not mistakenly eliminated prior to downstream modeling. This paper focuses on Relief-based algorithms (RBAs), a unique family of filter-style feature selection algorithms that have gained appeal by striking an effective balance between these objectives while flexibly adapting to various data characteristics, e.g. classification vs. regression. First, this work broadly examines types of feature selection and defines RBAs within that context. Next, we introduce the original Relief algorithm and associated concepts, emphasizing the intuition behind how it works, how feature weights generated by the algorithm can be interpreted, and why it is sensitive to feature interactions without evaluating combinations of features. Lastly, we include an expansive review of RBA methodological research beyond Relief and its popular descendant, ReliefF. In particular, we characterize branches of RBA research, and provide comparative summaries of RBA algorithms including contributions, strategies, functionality, time complexity, adaptation to key data characteristics, and software availability.Comment: Submitted revisions for publication based on reviews by the Journal of Biomedical Informatic
    • …
    corecore