6 research outputs found

    Channel estimation scheme for 3.9G wireless communication systems using RLS algorithm

    Full text link
    Main challenges for a terminal implementation are efficient realization of the receiver, especially for channel estimation (CE) and equalization. In this paper, training based recursive least square (RLS) channel estimator technique is presented for a long term evolution (LTE) single carrier-frequency division multiple access (SC-FDMA) wireless communication system. This CE scheme uses adaptive RLS estimator which is able to update parameters of the estimator continuously, so that knowledge of channel and noise statistics are not required. Simulation results show that the RLS CE scheme with 500 Hz Doppler frequency has 3 dB better performances compared with 1.5 kHz Doppler frequency

    Peak to average power ratio analysis for LTE systems

    Full text link
    The 3rd generation partnership project (3GPP) long term evolution (LTE) standard uses single carrier frequency division multiple access (SCFDMA) scheme for the uplink transmissions and orthogonal frequency division multiplexing access (OFDMA) in downlink. SCFDMA uses DFT spreading prior to OFDMA modulation to map the signal from each user to a subset of the available subcarriers i.e., single carrier modulation. The efficiency of a power amplifier is determined by the peak to average power ratio (PAPR) of the modulated signal. In this paper, we analyze the PAPR in 3GPP LTE systems using root raised cosine based filter. Simulation results show that the SCFDMA subcarrier mapping has a significantly lower PAPR compared to OFDMA. Also comparing the three forms of SCFDMA subcarrier mapping, results show that interleave FDMA (IFDMA) subcarrier mapping with proposed root raised cosine filter reduced PAPR significantly than localized FDMA (LFDMA) and distributed (DFDMA) mapping. This improves its radio frequency (RF) power amplifier efficiency and also the mean power output from a battery driven mobile terminal.<br /

    Low complexity MMSE based channel estimation technique for LTE OFDMA systems

    Full text link
    Long term evolution (LTE) is designed for high speed data rate, higher spectral efficiency, and lower latency as well as high-capacity voice support. LTE uses single carrierfrequency division multiple access (SC-FDMA) scheme for the uplink transmission and orthogonal frequency division multiple access (OFDMA) in downlink. The one of the most important challenges for a terminal implementation are channel estimation (CE) and equalization. In this paper, a minimum mean square error (MMSE) based channel estimator is proposed for an OFDMA systems that can avoid the ill-conditioned least square (LS) problem with lower computational complexity. This channel estimation technique uses knowledge of channel properties to estimate the unknown channel transfer function at non-pilot subcarriers.<br /

    Adaptive channel estimation for LTE uplink

    Get PDF
    Third generation partnership project (3GPP) long term evolution (LTE) uses single carrier frequency division multiple access (SC-FDMA) in uplink transmission and orthogonal frequency division multiple access (OFDMA) scheme for the downlink. A variable step size based least mean squares (LMS) algorithm is formulated for a single carrier frequency division multiple access (SC-FDMA) system, in its channel estimation (CE). The weighting coefficients on the channel condition can be updated using this unbiased CE method. Channel and noise statistics information are not essential. Rather, it uses a phase weighting scheme to eliminate the signal fluctuations due to noise and decision errors. The convergence towards the true channel coefficient is guaranteed. The proposed algorithm is compared with the existing algorithms for BER and MSE performance in different channel environments

    Iterative Channel Estimation with Robust Wiener Filtering in LTE Downlink

    No full text
    corecore