270,186 research outputs found

    Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors

    Full text link
    We have studied the oxygen-isotope effects on T_{c} and in-plane penetration depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%). The present results along with the previously observed isotope effects in single-layer and double-layer cuprates indicate that the isotope exponent \alpha_{O} in optimally doped cuprates is small while the isotope effect on the in-plane effective supercarrier mass is substantial and nearly independent of the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to explain the isotope effects, high-T_{c} superconductivity and tunneling spectra in a consistent way.Comment: 5 pages, 4 figure

    Solubility isotope effects in aqueous solutions of methane

    Get PDF
    The isotope effect on the Henry's law coefficients of methane in aqueous solution (H/D and C-12/C-13 substitution) are interpreted using the statistical mechanical theory of condensed phase isotope effects. The missing spectroscopic data needed for the implementation of the theory were obtained either experimentally (infrared measurements), by computer simulation (molecular dynamics technique), or estimated using the Wilson's GF matrix method. The order of magnitude and sign of both solute isotope effects can be predicted by the theory. Even a crude estimation based on data from previous vapor pressure isotope effect studies of pure methane at low temperature can explain the inverse effect found for the solubility of deuterated methane in water. (C) 2002 American Institute of Physics

    Dynamical Mean-Field Theory of Electron-Phonon Interactions in Correlated Systems: Application to Isotope Effects on Electronic Properties

    Full text link
    We use a recently developed formalism (combining an adiabatic expansion and dynamical mean-field theory) to obtain expressions for isotope effects on electronic properties in correlated systems. As an example we calculate the isotope effect on electron effective mass for the Holstein model as a function of electron-phonon interaction strength and doping. Our systematic expansion generates diagrams neglected in previous studies, which turn out to give the dominant contributions. The isotope effect is small unless the system is near a lattice instability. We compare this to experiment.Comment: 6 pages, 4 figures; added discussion of isotope effect away from half fillin

    Ab initio simulations of hydrogen-bonded ferroelectrics: collective tunneling and the origin of geometrical isotope effects

    Full text link
    Ab initio simulations that account for nuclear quantum effects have been used to examine the order-disorder transition in squaric acid, a prototypical H-bonded antiferroelectric crystal. Our simulations reproduce the >100 K difference in transition temperature observed upon deuteration as well as the strong geometrical isotope effect observed on intermolecular separations within the crystal. We find that collective transfer of protons along the H-bonding chains - facilitated by quantum mechanical tunneling - is critical to the order-disorder transition and the geometrical isotope effect. This sheds light on the origin of isotope effects and the importance of tunneling in squaric acid which likely extends to other H-bonded ferroelectrics.Comment: 5 pages, 4 figure

    Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms

    Full text link
    We examine the isotope effect of superconductivity in systems with coexisting interactions of phonon and nonphonon mechanisms in addition to the direct Coulomb interaction. The interaction mediated by the spin fluctuations is discussed as an example of the nonphonon interaction. Extended formulas for the transition temperature Tc and the isotope-effect coefficient alpha are derived for cases (a) omega_np omega_D, where omega_np is an effective cutoff frequency of the nonphonon interaction that corresponds to the Debye frequency omega_D in the phonon interaction. In case (a), it is found that the nonphonon interaction does not change the condition for the inverse isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of alpha markedly. In particular, it is found that a giant isotope shift occurs when the phonon and nonphonon interactions cancel each other largely. For instance, strong critical spin fluctuations may give rise to the giant isotope effect. In case (b), it is found that the inverse isotope effect occurs only when the nonphonon interaction and the repulsive Coulomb interaction, in total effect, work as repulsive interactions against the superconductivity. We discuss the relevance of the present result to some organic superconductors, such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse isotope effects have been observed, and briefly to high-Tc cuprates, in which giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic correction

    Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea)

    Get PDF
    We tested the impacts of most common sample preservation methods used for aquatic sample materials on the stable isotope ratios of carbon and nitrogen in clams, a typical baseline indicator organism for many aquatic food web studies utilising stable isotope analysis (SIA). In addition to common chemical preservatives ethanol and formalin, we also assessed the potential impacts of freezing on δ¹³C and δ¹⁵N values and compared the preserved samples against freshly dried and analysed samples. All preservation methods, including freezing, had significant impacts on δ¹³C and δ¹⁵N values and the effects in general were greater on the carbon isotope values (1.3-2.2% difference) than on the nitrogen isotope values (0.9-1.0% difference). However, the impacts produced by the preservation were rather consistent within each method during the whole 1 year experiment allowing these to be accounted for, if clams are intended for use in retrospective stable isotope studies

    Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model

    Get PDF
    The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their isotopic composition, into the global chemistry transport model TM5. For the first time, a global model now includes a simplified but explicit isotope reaction scheme for the photochemical production of H2. We present a comparison of modelled results for the H2 mixing ratio and isotope composition with available measurements on the seasonal to inter annual time scales for the years 2001–2007. The base model results agree well with observations for H2 mixing ratios. For dD[H2], modelled values are slightly lower than measurements. A detailed sensitivity study is performed to identify the most important parameters for modelling the isotopic composition of H2. The results show that on the global scale, the discrepancy between model and measurements can be closed by adjusting the default values of the isotope effects in deposition, photochemistry and the stratosphere-troposphere exchange within the known range of uncertainty. However, the available isotope data do not provide sufficient information to uniquely constrain the global isotope budget. Therefore, additional studies focussing on the isotopic composition near the tropopause and on the isotope effects in the photochemistry and deposition are recommended
    corecore