762 research outputs found

    Pointless curves of genus three and four

    Full text link
    A curve over a field k is pointless if it has no k-rational points. We show that there exist pointless genus-3 hyperelliptic curves over a finite field F_q if and only if q < 26, that there exist pointless smooth plane quartics over F_q if and only if either q < 24 or q = 29 or q = 32, and that there exist pointless genus-4 curves over F_q if and only if q < 50.Comment: LaTeX, 15 page

    Counting hyperelliptic curves that admit a Koblitz model

    Full text link
    Let k be a finite field of odd characteristic. We find a closed formula for the number of k-isomorphism classes of pointed, and non-pointed, hyperelliptic curves of genus g over k, admitting a Koblitz model. These numbers are expressed as a polynomial in the cardinality q of k, with integer coefficients (for pointed curves) and rational coefficients (for non-pointed curves). The coefficients depend on g and the set of divisors of q-1 and q+1. These formulas show that the number of hyperelliptic curves of genus g suitable (in principle) of cryptographic applications is asymptotically (1-e^{-1})2q^{2g-1}, and not 2q^{2g-1} as it was believed. The curves of genus g=2 and g=3 are more resistant to the attacks to the DLP; for these values of g the number of curves is respectively (91/72)q^3+O(q^2) and (3641/2880)q^5+O(q^4)

    Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem

    Get PDF
    Fix an ordinary abelian variety defined over a finite field. The ideal class group of its endomorphism ring acts freely on the set of isogenous varieties with same endomorphism ring, by complex multiplication. Any subgroup of the class group, and generating set thereof, induces an isogeny graph on the orbit of the variety for this subgroup. We compute (under the Generalized Riemann Hypothesis) some bounds on the norms of prime ideals generating it, such that the associated graph has good expansion properties. We use these graphs, together with a recent algorithm of Dudeanu, Jetchev and Robert for computing explicit isogenies in genus 2, to prove random self-reducibility of the discrete logarithm problem within the subclasses of principally polarizable ordinary abelian surfaces with fixed endomorphism ring. In addition, we remove the heuristics in the complexity analysis of an algorithm of Galbraith for explicitly computing isogenies between two elliptic curves in the same isogeny class, and extend it to a more general setting including genus 2.Comment: 18 page
    • …
    corecore