311,404 research outputs found
Community dynamics of insular biotas in space and time
The various features determining species distributions remain enigmatic in ecology. This thesis deals with the spatial and temporal dynamics of land birds on the islands of the Dahlak archipelago, the Red Sea, and of mammals, birds and reptiles among the forest fragments of the archipelago-like east African coastal forest. The bird species richness on the islands of the Dahlak archipelago depended on area, isolation and extent of habitat. Similarly, species richness of the east African forest fragments was related to area, habitat diversity and isolation but the importance of each factor varied among taxa as well as among generalists and specialists. For example, area influenced species richness of most categories except specialist mammals and reptiles, habitat diversity was more important for forest specialists than generalists, and isolation was important only for birds. In both study areas, similarity in bird species composition decreased with increasing distances among isolates suggesting that dispersal from source pools and among isolates facilitate re-colonization. The nested community structure, i.e. species composition of species−poor communities are a subset of species−rich communities, of birds in the Dahlak archipelago depended on area and the distribution of a few habitats. Similarities in community patterns and cooccurrence patterns, at both community and species levels, were mainly related to habitat preferences and corresponding distributions of habitats as well as inter-island distances. Also, the distributional patterns suggest that predator-prey interactions can be a determinant of the spatial distribution of, at least, the prey. There was no evidence of competitive exclusion. The nested structure on the islands of the Dahlak archipelago remained fairly stable over a period of 35 years even in this arid region. The turnover dynamics were broadly predictable from the nested pattern but not always consistent with other expectations from nested community structure. Taken together my results show that mechanisms on varying spatial and temporal scales act on species distributions, and that the influence may vary among taxa mainly depending on dispersal ability. In the case of conservation, comprehensive strategies accounting for these variations are needed
Marked decline in forest-dependent small mammals following habitat loss and fragmentation in an Amazonian deforestation frontier
Agricultural frontier expansion into the Amazon over the last four decades has created million hectares of fragmented forests. While many species undergo local extinctions within remaining forest patches, this may be compensated by native species from neighbouring open-habitat areas potentially invading these patches, particularly as forest habitats become increasingly degraded. Here, we examine the effects of habitat loss, fragmentation and degradation on small mammal assemblages in a southern Amazonian deforestation frontier, while accounting for species-specific degree of forest-dependency. We surveyed small mammals at three continuous forest sites and 19 forest patches of different sizes and degrees of isolation. We further sampled matrix habitats adjacent to forest patches, which allowed us to classify each species according to forest-dependency and generate a community-averaged forest-dependency index for each site. Based on 21,568 trap-nights, we recorded 970 small mammals representing 20 species: 12 forest-dependents, 5 matrix-tolerants and 3 open-habitat specialists. Across the gradient of forest patch size, small mammal assemblages failed to show the typical species-area relationship, but this relationship held true when either species abundance or composition was considered. Species composition was further mediated by community-averaged forest-dependency, so that smaller forest patches were occupied by a lower proportion of forest-dependent rodents and marsupials. Both species richness and abundance increased in less isolated fragments surrounded by structurally simplified matrix habitats (e.g. active or abandoned cattle pastures). While shorter distances between forest patches may favour small mammal abundances, forest area and matrix complexity dictated which species could persist within forest fragments according to their degree of forest-dependency. Small mammal local extinctions in small forest patches within Amazonian deforestation frontiers are therefore likely offset by the incursion of open-habitat species. To preclude the dominance of those species, and consequent losses of native species and associated ecosystem functions, management actions should limit or reduce areas dedicated to pasture, additionally maintaining more structurally complex matrix habitats across fragmented landscapes
Seed rain and soil seed banks limit native regeneration within urban forest restoration plantings in Hamilton City, New Zealand
Restoration of native forest vegetation in urban environments may be limited due to isolation from native seed sources and to the prevalence of exotic plant species. To investigate urban seed availability we recorded the composition of seed rain, soil seed banks and vegetation at native forest restoration plantings up to 36 years old in Hamilton City and compared these with naturally regenerating forest within the city and in a nearby rural native forest remnant. Seed rain, soil seed banks (fern spores inclusive) and understorey vegetation in urban forest were found to have higher exotic species richness and lower native species density and richness than rural forest. Both understorey vegetation and soil seed banks of urban sites >20 years old had lower exotic species richness than younger (10–20 years) sites, indicating a developmental threshold that provided some resistance to exotic species establishment. However, the prevalence of exotic species in urban seed rain will allow reinvasion through edge habitat and following disturbance to canopy vegetation. Persistent soil seed banks from both urban and rural sites were dominated by exotic herbaceous species and native fern species, while few other native forest species were found to persist for >1 year in the seed bank. Enrichment planting will be required for those native species with limited dispersal or short-lived seeds, thus improving native seed availability in urban forests as more planted species mature reproductively. Further research into species seed traits and seedling establishment is needed to refine effective management strategies for successful restoration of urban native forests
Forest patch isolation drives local extinctions of Amazonian orchid bees in a 26 years old archipelago
Major hydroelectric dams are among key emergent agents of habitat loss and fragmentation in lowland tropical forests. Orchid bees (Apidae, Euglossini) are one of the most important groups of specialized pollinators of flowering plants in Neotropical forests. Here, we investigate how an entire assemblage of orchid bees responded to the effects of forest habitat loss, isolation and forest canopy degradation induced by a hydroelectric reservoir of Central Brazilian Amazonia. Built in 1986, the Balbina Dam resulted in a vast archipelagic landscape containing 3546 primary forest islands of varying sizes and isolation, surrounded by 3129 km2 of freshwater. Using scent traps, we sampled 34 islands, 14 open-water matrix sites, and three mainland continuous forests, yielding 2870 male orchid bees representing 25 species. Local orchid bee species richness was affected by forest patch area but particularly by site isolation. Distance to forest edges, either within forest areas or into the open-water matrix, was the most important predictor of species richness and composition. Variation in matrix dispersal of individual species to increasingly isolated sites was a key determinant of community structure. Given the patterns of patch persistence and matrix movements of orchid bees in increasingly fragmented forest landscapes, we outline how forest bees respond to the landscape alteration induced by major hydroelectric dams. These results should be considered in environmental impact studies prior to the approval of new dams
Design matters : an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design
In recent years, large clearings (>1000 ha) accounted for gradually smaller amounts of total annual deforestation
in the Brazilian Amazon, whereas the proportion of small clearings (<50 ha) nowadays represents
more than 80% of annual deforestation. Despite the ubiquity of small clearings in fragmented
Amazonian landscapes, most fragmentation research has focused on the effects of large-scale deforestation,
leading to a poor understanding of the impacts of smaller barriers on Amazonian vertebrates. We
capitalized on the periodical re-isolation of experimental forest fragments at the Biological Dynamics
of Forest Fragments Project in the Central Amazon as a before-after-control-impact experiment to investigate
the short-term effects of small clearings on bat assemblages. Over the course of three years we
sampled six control sites in continuous forest, the interiors and edges of eight forest fragments as well
as eight sites in the surrounding matrix. Sampling took place both before and after the experimental
manipulation (clearing of a 100 m wide strip of regrowth around each fragment), resulting in ~4000
bat captures. Species were classified as old-growth specialists and habitat generalists according to their
habitat affinities and a joint species distribution modeling framework was used to investigate the effect
of fragment re-isolation on species occupancy. Following fragment re-isolation, species richness declined
in all habitats other than fragment edges and, although responses were idiosyncratic, this decline was
more pronounced for forest specialist than for generalist species. Additionally, fragment re-isolation
led to a reduction in the similarity between assemblages in modified habitats (fragment interiors, edges
and matrix) and continuous forest. Sampling of controls in continuous forest both prior to and after reisolation
revealed that much of the variation in bat species occupancy between sampling periods did not
arise from fragment re-isolation but rather reflected natural spatiotemporal variability. This emphasizes
the need to sample experimental controls both before and after experimental manipulation and suggests
caution in the interpretation of results from studies in which the effects of habitat transformations are
assessed based solely on data collected using space-for-time substitution approaches
Geography and History of Periodical Cicadas (Hemiptera: Cicadidae) in DuPage County, Illinois
The spatial distribution of periodical cicada (Magicicada septendecim L. and M. cassini Fisher) emergence in 2007 did not match either historical locations of woodlands or the cicadas’ own geography in the 19th and early 20th centuries in DuPage County, Illinois. Cicadas were present in forest areas that had remained above 61 ha throughout historic times, and they were absent from areas which at some point had been reduced below 52 ha by tree removal, mainly for agriculture. Isolation of forest areas also may have contributed to local extinctions. The insects have spread into new, urban woodlands created by residential plantings. Their distribution is associated with the early growth of towns along commuter railways in the eastern part of the county (toward Chicago). A peculiar gap in the main emergence area (encompassing two adjacent cities) may be the result of the cicadas shifting their emergence four years early. An active dispersal on 9–11 June, coinciding with the peak in cicada singing in forested areas, apparently placed scattered small groups of cicadas outside the main emergence area
The Influence of Management and Silvicultural Practices on The Incidence of Heart Rot in Acacia Mangium Plantations
Acacia mangium Willd., a major exotic timber species used
in the Compensatory Forest Plantation Program for the
product ion of saw logs, was found to be infected by heart
rot. To evaluate the incidence and severity of heart rot in A. mangium plantations, a study consisted of laboratory
investigations and field surveys was conducted. The
laboratory studies include isolation of fungi from
infected tree, determination of wood density, microscopic
observations, and chemical wood analyses. Field surveys were
conducted at five plantations, namely Rantau Panjang Forest
Reserve (RPFR), Bukit Tarek Forest Reserve (BTFR),
Kemasul Forest Reserve (KFR), Setul Forest Reserve (SFR),
and Ulu Sedili Forest Reserve (USFR)
Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland
Habitat loss and fragmentation lead to changes in species richness and composition which may affect ecosystem services. Yet, few studies distinguish between the effects of habitat loss and isolation, or how multiple ecosystem services may be affected simultaneously. We investigated the effects of variation in cover of woody and open semi-natural habitats and isolation from forest on the relative functioning of pollination, seed predation and insect scavenging in agricultural landscapes. We established 30 sites in grassland locations in the Swiss plateau around Berne. The sites varied independently in their isolation from forest edges, in the percentage of woody habitats and in the percentage of open semi-natural habitats in the surrounding landscape (500m radius). We experimentally exposed primroses, sunflower seeds and cricket corpses during spring 2008. None of the three studied services was affected by variation in woody or open semi-natural habitat cover. However, the proportion of flowers setting seed was significantly reduced by isolation from forest. Further, seed predation and insect scavenging were significantly lower at isolated sites than at sites connected to woody habitat. This pattern was particularly pronounced for seeds and insect corpses that were enclosed by wire netting and thus inaccessible to vertebrates. Thus, all three studied services responded quite similarly to the landscape context. The observed small-scale determination of seed set, seed predation and insect scavenging contrasts with larger-scale determination of pollination and insect pest control found in other studie
- …
