42 research outputs found

    Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling

    Get PDF
    This paper discusses a method of stabilizing Lagrange multiplier fields used to couple thin immersed shell structures and surrounding fluids. The method retains essential conservation properties by stabilizing only the portion of the constraint orthogonal to a coarse multiplier space. This stabilization can easily be applied within iterative methods or semi-implicit time integrators that avoid directly solving a saddle point problem for the Lagrange multiplier field. Heart valve simulations demonstrate applicability of the proposed method to 3D unsteady simulations. An appendix sketches the relation between the proposed method and a high-order-accurate approach for simpler model problems

    Incompressible image registration using divergence-conforming B-splines

    Get PDF
    Anatomically plausible image registration often requires volumetric preservation. Previous approaches to incompressible image registration have exploited relaxed constraints, ad hoc optimisation methods or practically intractable computational schemes. Divergence-free velocity fields have been used to achieve incompressibility in the continuous domain, although, after discretisation, no guarantees have been provided. In this paper, we introduce stationary velocity fields (SVFs) parameterised by divergence-conforming B-splines in the context of image registration. We demonstrate that sparse linear constraints on the parameters of such divergence-conforming B-Splines SVFs lead to being exactly divergence-free at any point of the continuous spatial domain. In contrast to previous approaches, our framework can easily take advantage of modern solvers for constrained optimisation, symmetric registration approaches, arbitrary image similarity and additional regularisation terms. We study the numerical incompressibility error for the transformation in the case of an Euler integration, which gives theoretical insights on the improved accuracy error over previous methods. We evaluate the proposed framework using synthetically deformed multimodal brain images, and the STACOM11 myocardial tracking challenge. Accuracy measurements demonstrate that our method compares favourably with state-of-the-art methods whilst achieving volume preservation.Comment: Accepted at MICCAI 201

    Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids

    Full text link
    In this paper, we first construct a nonconforming finite element pair for the incompressible Stokes problem on quadrilateral grids, and then construct a discrete Stokes complex associated with that finite element pair. The finite element spaces involved consist of piecewise polynomials only, and the divergence-free condition is imposed in a primal formulation. Combined with some existing results, these constructions can be generated onto grids that consist of both triangular and quadrilateral cells

    Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations

    Full text link
    This paper presents the construction of a correct-energy stabilized finite element method for the incompressible Navier-Stokes equations. The framework of the methodology and the correct-energy concept have been developed in the convective--diffusive context in the preceding paper [M.F.P. ten Eikelder, I. Akkerman, Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. I: The convective--diffusive context, Comput. Methods Appl. Mech. Engrg. 331 (2018) 259--280]. The current work extends ideas of the preceding paper to build a stabilized method within the variational multiscale (VMS) setting which displays correct-energy behavior. Similar to the convection--diffusion case, a key ingredient is the proper dynamic and orthogonal behavior of the small-scales. This is demanded for correct energy behavior and links the VMS framework to the streamline-upwind Petrov-Galerkin (SUPG) and the Galerkin/least-squares method (GLS). The presented method is a Galerkin/least-squares formulation with dynamic divergence-free small-scales (GLSDD). It is locally mass-conservative for both the large- and small-scales separately. In addition, it locally conserves linear and angular momentum. The computations require and employ NURBS-based isogeometric analysis for the spatial discretization. The resulting formulation numerically shows improved energy behavior for turbulent flows comparing with the original VMS method.Comment: Update to postprint versio

    H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

    Get PDF
    A finite element cochain complex on Cartesian meshes of any dimension based on the H1-inner product is introduced. It yields H1-conforming finite element spaces with exterior derivatives in H1. We use a tensor product construction to obtain L2-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order
    corecore