19,028 research outputs found

    Coherent Semantic Attention for Image Inpainting

    Full text link
    The latest deep learning-based approaches have shown promising results for the challenging task of inpainting missing regions of an image. However, the existing methods often generate contents with blurry textures and distorted structures due to the discontinuity of the local pixels. From a semantic-level perspective, the local pixel discontinuity is mainly because these methods ignore the semantic relevance and feature continuity of hole regions. To handle this problem, we investigate the human behavior in repairing pictures and propose a fined deep generative model-based approach with a novel coherent semantic attention (CSA) layer, which can not only preserve contextual structure but also make more effective predictions of missing parts by modeling the semantic relevance between the holes features. The task is divided into rough, refinement as two steps and model each step with a neural network under the U-Net architecture, where the CSA layer is embedded into the encoder of refinement step. To stabilize the network training process and promote the CSA layer to learn more effective parameters, we propose a consistency loss to enforce the both the CSA layer and the corresponding layer of the CSA in decoder to be close to the VGG feature layer of a ground truth image simultaneously. The experiments on CelebA, Places2, and Paris StreetView datasets have validated the effectiveness of our proposed methods in image inpainting tasks and can obtain images with a higher quality as compared with the existing state-of-the-art approaches

    Free-Form Image Inpainting with Gated Convolution

    Full text link
    We present a generative image inpainting system to complete images with free-form mask and guidance. The system is based on gated convolutions learned from millions of images without additional labelling efforts. The proposed gated convolution solves the issue of vanilla convolution that treats all input pixels as valid ones, generalizes partial convolution by providing a learnable dynamic feature selection mechanism for each channel at each spatial location across all layers. Moreover, as free-form masks may appear anywhere in images with any shape, global and local GANs designed for a single rectangular mask are not applicable. Thus, we also present a patch-based GAN loss, named SN-PatchGAN, by applying spectral-normalized discriminator on dense image patches. SN-PatchGAN is simple in formulation, fast and stable in training. Results on automatic image inpainting and user-guided extension demonstrate that our system generates higher-quality and more flexible results than previous methods. Our system helps user quickly remove distracting objects, modify image layouts, clear watermarks and edit faces. Code, demo and models are available at: https://github.com/JiahuiYu/generative_inpaintingComment: Accepted in ICCV 2019 Oral; open sourced; interactive demo available: http://jiahuiyu.com/deepfill

    High-Resolution Image Inpainting with Iterative Confidence Feedback and Guided Upsampling

    Full text link
    Existing image inpainting methods often produce artifacts when dealing with large holes in real applications. To address this challenge, we propose an iterative inpainting method with a feedback mechanism. Specifically, we introduce a deep generative model which not only outputs an inpainting result but also a corresponding confidence map. Using this map as feedback, it progressively fills the hole by trusting only high-confidence pixels inside the hole at each iteration and focuses on the remaining pixels in the next iteration. As it reuses partial predictions from the previous iterations as known pixels, this process gradually improves the result. In addition, we propose a guided upsampling network to enable generation of high-resolution inpainting results. We achieve this by extending the Contextual Attention module to borrow high-resolution feature patches in the input image. Furthermore, to mimic real object removal scenarios, we collect a large object mask dataset and synthesize more realistic training data that better simulates user inputs. Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations. More results and Web APP are available at https://zengxianyu.github.io/iic

    Learning Pyramid-Context Encoder Network for High-Quality Image Inpainting

    Full text link
    High-quality image inpainting requires filling missing regions in a damaged image with plausible content. Existing works either fill the regions by copying image patches or generating semantically-coherent patches from region context, while neglect the fact that both visual and semantic plausibility are highly-demanded. In this paper, we propose a Pyramid-context ENcoder Network (PEN-Net) for image inpainting by deep generative models. The PEN-Net is built upon a U-Net structure, which can restore an image by encoding contextual semantics from full resolution input, and decoding the learned semantic features back into images. Specifically, we propose a pyramid-context encoder, which progressively learns region affinity by attention from a high-level semantic feature map and transfers the learned attention to the previous low-level feature map. As the missing content can be filled by attention transfer from deep to shallow in a pyramid fashion, both visual and semantic coherence for image inpainting can be ensured. We further propose a multi-scale decoder with deeply-supervised pyramid losses and an adversarial loss. Such a design not only results in fast convergence in training, but more realistic results in testing. Extensive experiments on various datasets show the superior performance of the proposed networkComment: Accepted as a CVPR 2019 poster paper; update SUPP;update Eq5

    EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning

    Full text link
    Over the last few years, deep learning techniques have yielded significant improvements in image inpainting. However, many of these techniques fail to reconstruct reasonable structures as they are commonly over-smoothed and/or blurry. This paper develops a new approach for image inpainting that does a better job of reproducing filled regions exhibiting fine details. We propose a two-stage adversarial model EdgeConnect that comprises of an edge generator followed by an image completion network. The edge generator hallucinates edges of the missing region (both regular and irregular) of the image, and the image completion network fills in the missing regions using hallucinated edges as a priori. We evaluate our model end-to-end over the publicly available datasets CelebA, Places2, and Paris StreetView, and show that it outperforms current state-of-the-art techniques quantitatively and qualitatively. Code and models available at: https://github.com/knazeri/edge-connectComment: Code and data: https://github.com/knazeri/edge-connec

    PEPSI++: Fast and Lightweight Network for Image Inpainting

    Full text link
    Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, owing to two stacked generative networks, the coarse-to-fine network needs numerous computational resources such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called PEPSI: parallel extended-decoder path for semantic inpainting network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers, which employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e. the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs such as computational time and the number of network parameters.Comment: Accepted to IEEE transactions on Neural Networks and Learning Systems. To be publishe

    Context-Aware Semantic Inpainting

    Full text link
    Recently image inpainting has witnessed rapid progress due to generative adversarial networks (GAN) that are able to synthesize realistic contents. However, most existing GAN-based methods for semantic inpainting apply an auto-encoder architecture with a fully connected layer, which cannot accurately maintain spatial information. In addition, the discriminator in existing GANs struggle to understand high-level semantics within the image context and yield semantically consistent content. Existing evaluation criteria are biased towards blurry results and cannot well characterize edge preservation and visual authenticity in the inpainting results. In this paper, we propose an improved generative adversarial network to overcome the aforementioned limitations. Our proposed GAN-based framework consists of a fully convolutional design for the generator which helps to better preserve spatial structures and a joint loss function with a revised perceptual loss to capture high-level semantics in the context. Furthermore, we also introduce two novel measures to better assess the quality of image inpainting results. Experimental results demonstrate that our method outperforms the state of the art under a wide range of criteria

    Deep Inception Generative Network for Cognitive Image Inpainting

    Full text link
    Recent advances in deep learning have shown exciting promise in filling large holes and lead to another orientation for image inpainting. However, existing learning-based methods often create artifacts and fallacious textures because of insufficient cognition understanding. Previous generative networks are limited with single receptive type and give up pooling in consideration of detail sharpness. Human cognition is constant regardless of the target attribute. As multiple receptive fields improve the ability of abstract image characterization and pooling can keep feature invariant, specifically, deep inception learning is adopted to promote high-level feature representation and enhance model learning capacity for local patches. Moreover, approaches for generating diverse mask images are introduced and a random mask dataset is created. We benchmark our methods on ImageNet, Places2 dataset, and CelebA-HQ. Experiments for regular, irregular, and custom regions completion are all performed and free-style image inpainting is also presented. Quantitative comparisons with previous state-of-the-art methods show that ours obtain much more natural image completions

    TE141K: Artistic Text Benchmark for Text Effect Transfer

    Full text link
    Text effects are combinations of visual elements such as outlines, colors and textures of text, which can dramatically improve its artistry. Although text effects are extensively utilized in the design industry, they are usually created by human experts due to their extreme complexity; this is laborious and not practical for normal users. In recent years, some efforts have been made toward automatic text effect transfer; however, the lack of data limits the capabilities of transfer models. To address this problem, we introduce a new text effects dataset, TE141K, with 141,081 text effect/glyph pairs in total. Our dataset consists of 152 professionally designed text effects rendered on glyphs, including English letters, Chinese characters, and Arabic numerals. To the best of our knowledge, this is the largest dataset for text effect transfer to date. Based on this dataset, we propose a baseline approach called text effect transfer GAN (TET-GAN), which supports the transfer of all 152 styles in one model and can efficiently extend to new styles. Finally, we conduct a comprehensive comparison in which 14 style transfer models are benchmarked. Experimental results demonstrate the superiority of TET-GAN both qualitatively and quantitatively and indicate that our dataset is effective and challenging.Comment: Accepted by TPAMI 2020. Project page: https://daooshee.github.io/TE141K

    Decompose to manipulate: Manipulable Object Synthesis in 3D Medical Images with Structured Image Decomposition

    Full text link
    The performance of medical image analysis systems is constrained by the quantity of high-quality image annotations. Such systems require data to be annotated by experts with years of training, especially when diagnostic decisions are involved. Such datasets are thus hard to scale up. In this context, it is hard for supervised learning systems to generalize to the cases that are rare in the training set but would be present in real-world clinical practices. We believe that the synthetic image samples generated by a system trained on the real data can be useful for improving the supervised learning tasks in the medical image analysis applications. Allowing the image synthesis to be manipulable could help synthetic images provide complementary information to the training data rather than simply duplicating the real-data manifold. In this paper, we propose a framework for synthesizing 3D objects, such as pulmonary nodules, in 3D medical images with manipulable properties. The manipulation is enabled by decomposing of the object of interests into its segmentation mask and a 1D vector containing the residual information. The synthetic object is refined and blended into the image context with two adversarial discriminators. We evaluate the proposed framework on lung nodules in 3D chest CT images and show that the proposed framework could generate realistic nodules with manipulable shapes, textures and locations, etc. By sampling from both the synthetic nodules and the real nodules from 2800 3D CT volumes during the classifier training, we show the synthetic patches could improve the overall nodule detection performance by average 8.44% competition performance metric (CPM) score
    corecore