2 research outputs found

    Iris Recognition with Image Segmentation Employing Retrained Off-the-Shelf Deep Neural Networks

    Full text link
    This paper offers three new, open-source, deep learning-based iris segmentation methods, and the methodology how to use irregular segmentation masks in a conventional Gabor-wavelet-based iris recognition. To train and validate the methods, we used a wide spectrum of iris images acquired by different teams and different sensors and offered publicly, including data taken from CASIA-Iris-Interval-v4, BioSec, ND-Iris-0405, UBIRIS, Warsaw-BioBase-Post-Mortem-Iris v2.0 (post-mortem iris images), and ND-TWINS-2009-2010 (iris images acquired from identical twins). This varied training data should increase the generalization capabilities of the proposed segmentation techniques. In database-disjoint training and testing, we show that deep learning-based segmentation outperforms the conventional (OSIRIS) segmentation in terms of Intersection over Union calculated between the obtained results and manually annotated ground-truth. Interestingly, the Gabor-based iris matching is not always better when deep learning-based segmentation is used, and is on par with the method employing Daugman's based segmentation.Comment: Paper submitted for the IEEE International Conference on Biometrics (ICB2019

    Post-mortem Iris Recognition with Deep-Learning-based Image Segmentation

    Full text link
    This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 hours post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible.Comment: Paper submitted for the Elsevier Image and Vision Computing Journal on Jan 5th, 2019, revised versio
    corecore