27 research outputs found

    Perspective: Organic electronic materials and devices for neuromorphic engineering

    Full text link
    Neuromorphic computing and engineering has been the focus of intense research efforts that have been intensified recently by the mutation of Information and Communication Technologies (ICT). In fact, new computing solutions and new hardware platforms are expected to emerge to answer to the new needs and challenges of our societies. In this revolution, lots of candidates technologies are explored and will require leveraging of the pro and cons. In this perspective paper belonging to the special issue on neuromorphic engineering of Journal of Applied Physics, we focus on the current achievements in the field of organic electronics and the potentialities and specificities of this research field. We highlight how unique material features available through organic materials can be used to engineer useful and promising bioinspired devices and circuits. We also discuss about the opportunities that organic electronic are offering for future research directions in the neuromorphic engineering field

    Design and Implementation of BCM Rule Based on Spike-Timing Dependent Plasticity

    Full text link
    The Bienenstock-Cooper-Munro (BCM) and Spike Timing-Dependent Plasticity (STDP) rules are two experimentally verified form of synaptic plasticity where the alteration of synaptic weight depends upon the rate and the timing of pre- and post-synaptic firing of action potentials, respectively. Previous studies have reported that under specific conditions, i.e. when a random train of Poissonian distributed spikes are used as inputs, and weight changes occur according to STDP, it has been shown that the BCM rule is an emergent property. Here, the applied STDP rule can be either classical pair-based STDP rule, or the more powerful triplet-based STDP rule. In this paper, we demonstrate the use of two distinct VLSI circuit implementations of STDP to examine whether BCM learning is an emergent property of STDP. These circuits are stimulated with random Poissonian spike trains. The first circuit implements the classical pair-based STDP, while the second circuit realizes a previously described triplet-based STDP rule. These two circuits are simulated using 0.35 um CMOS standard model in HSpice simulator. Simulation results demonstrate that the proposed triplet-based STDP circuit significantly produces the threshold-based behaviour of the BCM. Also, the results testify to similar behaviour for the VLSI circuit for pair-based STDP in generating the BCM

    Spike-based local synaptic plasticity: a survey of computational models and neuromorphic circuits

    Get PDF
    Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of real-time, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if these models can be easily implemented in neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide an overview of representative brain-inspired synaptic plasticity models and mixed-signal complementary metal–oxide–semiconductor neuromorphic circuits within a unified framework. We review historical, experimental, and theoretical approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and postsynaptic neural signals, which we propose as an important requirement for physical implementations of synaptic plasticity circuits. Based on this principle, we compare the properties of these models within the same framework, and describe a set of mixed-signal electronic circuits that can be used to implement their computing principles, and to build efficient on-chip and online learning in neuromorphic processing systems

    Spike-based local synaptic plasticity: A survey of computational models and neuromorphic circuits

    Get PDF
    Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if and how they could be mapped onto neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide a comprehensive overview of representative brain-inspired synaptic plasticity models and mixed-signal CMOS neuromorphic circuits within a unified framework. We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and post-synaptic neuron information, which we propose as a fundamental requirement for physical implementations of synaptic plasticity. Based on this principle, we compare the properties of these models within the same framework, and describe the mixed-signal electronic circuits that implement their computing primitives, pointing out how these building blocks enable efficient on-chip and online learning in neuromorphic processing systems

    Modeling triplet spike-timing-dependent plasticity using memristive devices

    Get PDF
    Triplet-based spike-timing-dependent plasticity (TSTDP) is an advanced synaptic plasticity rule that results in improved learning capability compared to the conventional pair-based STDP (PSTDP). The TSTDP rule can reproduce the results of many electrophysiological experiments, where the PSTDP fails. This paper proposes a novel memristive circuit that implements the TSTDP rule. The proposed circuit is designed using three voltage (flux)-driven memristors. Simulation results demonstrate that our memristive circuit induces synaptic weight changes that arise due to the timing differences among pairs and triplets of spikes. The presented memristive design is an initial step toward developing asynchronous TSTDP learning architectures using memristive devices. These architectures may facilitate the implementation of advanced large-scale neuromorphic systems with applications in real-world engineering tasks such as pattern classification
    corecore