184,635 research outputs found
Designing Optimal Perovskite Structure for High Ionic Conduction.
Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes
Effects of sublattice symmetry and frustration on ionic transport in garnet solid electrolytes
We use rigorous group-theoretic techniques and molecular dynamics to
investigate the connection between structural symmetry and ionic conductivity
in the garnet family of solid Li-ion electrolytes. We identify new ordered
phases and order-disorder phase transitions that are relevant for conductivity
optimization. Ionic transport in this materials family is controlled by the
frustration of the Li sublattice caused by incommensurability with the host
structure at non-integer Li concentrations, while ordered phases explain
regions of sharply lower conductivity. Disorder is therefore predicted to be
optimal for ionic transport in this and other conductor families with strong Li
interaction.Comment: 6 pages, 4 figures, and supplementary informatio
Improvements to the Overpotential of All-Solid-State Lithium-Ion Batteries during the Past Ten Years
After the research that shows that Li10GeP2S12 (LGPS)-type sulfide solid electrolytes can reach the high ionic conductivity at the room temperature, sulfide solid electrolytes have been intensively developed with regard to ionic conductivity and mechanical properties. As a result, an increasing volume of research has been conducted to employ all-solid-state lithium batteries in electric automobiles within the next five years. To achieve this goal, it is important to review the research over the past decade, and understand the requirements for future research necessary to realize the practical applications of all-solid-state lithium batteries. To date, research on all-solid-state lithium batteries has focused on achieving overpotential properties similar to those of conventional liquid-lithium-ion batteries by increasing the ionic conductivity of the solid electrolytes. However, the increase in the ionic conductivity should be accompanied by improvements of the electronic conductivity within the electrode to enable practical applications. This essay provides a critical overview of the recent progress and future research directions of the all-solid-state lithium batteries for practical applications
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures
Many plastic crystals, molecular solids with long-range, center-of-mass
crystalline order but dynamic disorder of the molecular orientations, are known
to exhibit exceptionally high ionic conductivity. This makes them promising
candidates for applications as solid-state electrolytes, e.g., in batteries.
Interestingly, it was found that the mixing of two different
plastic-crystalline materials can considerably enhance the ionic dc
conductivity, an important benchmark quantity for electrochemical applications.
An example is the admixture of different nitriles to succinonitrile, the latter
being one of the most prominent plastic-crystalline ionic conductors. However,
until now only few such mixtures were studied. In the present work, we
investigate succinonitrile mixed with malononitrile, adiponitrile, and
pimelonitrile, to which 1 mol% of Li ions were added. Using differential
scanning calorimetry and dielectric spectroscopy, we examine the phase behavior
and the dipolar and ionic dynamics of these systems. We especially address the
mixing-induced enhancement of the ionic conductivity and the coupling of the
translational ionic mobility to the molecular reorientational dynamics,
probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J.
Chem. Phy
Mass transport and electrochemical properties of La2Mo2O9 as a fast ionic conductor
La2Mo2O9, as a new fast ionic conductor, has been investigated widely due to its high
ionic conductivity which is comparable to those of the commercialized materials. However,
little work has been reported on the oxygen transport and diffusion in this candidate
electrolyte material. The main purpose of this project was to investigate oxide ion diffusion
in La2Mo2O9 and also the factors which could affect oxygen transport properties.
Oxygen isotope exchange followed by Secondary Ion Mass Spectrometry (SIMS)
measurements were employed to obtain oxygen diffusion profiles. A correlation between
oxygen ion transport and the electrochemical properties such as ionic conductivity was
built upon the Nernst Einstein equation relating the diffusivity to electrical conductivity.
In-situ neutron diffraction and AC impedance measurements were designed and conducted
to investigate the correlation between crystal structure and oxygen transport in the bulk
materials. Other techniques, such as synthesis, microstructure studies, and thermal analysis
were also adopted to study the electrochemical properties of La2Mo2O9.
The results of the study on the effects of microstructure on oxygen diffusion in
La2Mo2O9 revealed that the grain boundary component played a significant role in
electrochemical performance, although the grain size seemed to have little influence on
oxygen transport. The oxygen isotope exchange in 18O2 was successfully carried out by
introducing a silver coating on the sample surface, which solved the main difficulty in
applying oxygen isotope exchange on pure ionic conductors. The ionic conductivity
obtained from the diffusion coefficients was consistent with the result from AC impedance spectroscopy. The number of mobile oxygen ions was estimated to be 5 per unit cell. There
was a difference of oxygen self diffusion coefficient when the isotope exchange was
conducted in 18O2 and H2
18O. The activation energy of oxygen diffusion in humidified
atmosphere was higher than that measured in dry atmosphere. It indicated that the
humidified atmosphere had affected oxygen transport in the material. The studies on
hydroxyl incorporation and transport explained the decreased oxygen diffusion coefficients
in wet atmosphere and also suggested proton conductivity in La2Mo2O9, which leads to
further investigation on applications of La2Mo2O9 as a proton conductor. In-situ neutron
diffraction and AC impedance measurement revealed a close relationship between crystal
structure and ionic conductivity. The successful application of this technique provides a
new method to simultaneously investigate crystal structure and electrical properties in
electro-ceramics in the future
Rechargeable battery which combats shape change of the zinc anode
A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes. The ion flow is greatest at the edges of the electrodes and least at the centers, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed in which the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile
Phonon Hall effect in ionic crystals in the presence of static magnetic field
We study phonon Hall effect (PHE) for ionic crystals in the presence of
static magnetic field. Using Green-Kubo formula, we present an exact
calculation of thermal conductivity tensor by considering both positive and
negative frequency phonons. Numerical results are shown for some lattices such
as hexagonal lattices, triangular lattices, and square lattices. We find that
the PHE occurs on the nonmagnetic ionic crystal NaCl, although the magnitude is
very small which is due to the tiny charge-to-mass ratio of the ions. The
off-diagonal thermal conductivity is finite for nonzero magnetic field and
changes sign for high value of magnetic field at high temperature. We also
found that the off-diagonal thermal conductivity diverges as at low
temperature
Ionic conductivity on a wetting surface
Recent experiments measuring the electrical conductivity of DNA molecules
highlight the need for a theoretical model of ion transport along a charged
surface. Here we present a simple theory based on the idea of unbinding of ion
pairs. The strong humidity dependence of conductivity is explained by the
decrease in the electrostatic self-energy of a separated pair when a layer of
water (with high dielectric constant) is adsorbed to the surface. We compare
our prediction for conductivity to experiment, and discuss the limits of its
applicability.Comment: 5 pages, 3 figures; one section and two illustrations added; figures
updated and discussion added; typo fixe
Impact of intrinsic localized modes of atomic motion on materials properties
Recent neutron and x-ray scattering measurements show intrinsic localized
modes (ILMs) in metallic uranium and ionic sodium iodide. Here, the role ILMs
play in the behavior of these materials is examined. With the thermal
activation of ILMs, thermal expansion is enhanced, made more anisotropic, and,
at a microscopic level, becomes inhomogeneous. Interstitial diffusion, ionic
conductivity, the annealing rate of radiation damage, and void growth are all
influenced by ILMs. The lattice thermal conductivity is suppressed above the
ILM activation temperature while no impact is observed in the electrical
conductivity. This complement of transport properties suggests that ILMs could
improve thermoelectric performance. Ramifications also include thermal
ratcheting, a transition from brittle to ductile fracture, and possibly a phase
transformation in uranium.Comment: 34 pages, 11 figure
- …
