124,980 research outputs found

    On the Activity Privacy of Blockchain for IoT

    Full text link
    Security is one of the fundamental challenges in the Internet of Things (IoT) due to the heterogeneity and resource constraints of the IoT devices. Device classification methods are employed to enhance the security of IoT by detecting unregistered devices or traffic patterns. In recent years, blockchain has received tremendous attention as a distributed trustless platform to enhance the security of IoT. Conventional device identification methods are not directly applicable in blockchain-based IoT as network layer packets are not stored in the blockchain. Moreover, the transactions are broadcast and thus have no destination IP address and contain a public key as the user identity, and are stored permanently in blockchain which can be read by any entity in the network. We show that device identification in blockchain introduces privacy risks as the malicious nodes can identify users' activity pattern by analyzing the temporal pattern of their transactions in the blockchain. We study the likelihood of classifying IoT devices by analyzing their information stored in the blockchain, which to the best of our knowledge, is the first work of its kind. We use a smart home as a representative IoT scenario. First, a blockchain is populated according to a real-world smart home traffic dataset. We then apply machine learning algorithms on the data stored in the blockchain to analyze the success rate of device classification, modeling both an informed and a blind attacker. Our results demonstrate success rates over 90\% in classifying devices. We propose three timestamp obfuscation methods, namely combining multiple packets into a single transaction, merging ledgers of multiple devices, and randomly delaying transactions, to reduce the success rate in classifying devices. The proposed timestamp obfuscation methods can reduce the classification success rates to as low as 20%

    User Perceptions of Smart Home IoT Privacy

    Full text link
    Smart home Internet of Things (IoT) devices are rapidly increasing in popularity, with more households including Internet-connected devices that continuously monitor user activities. In this study, we conduct eleven semi-structured interviews with smart home owners, investigating their reasons for purchasing IoT devices, perceptions of smart home privacy risks, and actions taken to protect their privacy from those external to the home who create, manage, track, or regulate IoT devices and/or their data. We note several recurring themes. First, users' desires for convenience and connectedness dictate their privacy-related behaviors for dealing with external entities, such as device manufacturers, Internet Service Providers, governments, and advertisers. Second, user opinions about external entities collecting smart home data depend on perceived benefit from these entities. Third, users trust IoT device manufacturers to protect their privacy but do not verify that these protections are in place. Fourth, users are unaware of privacy risks from inference algorithms operating on data from non-audio/visual devices. These findings motivate several recommendations for device designers, researchers, and industry standards to better match device privacy features to the expectations and preferences of smart home owners.Comment: 20 pages, 1 tabl

    PIANO: Proximity-based User Authentication on Voice-Powered Internet-of-Things Devices

    Full text link
    Voice is envisioned to be a popular way for humans to interact with Internet-of-Things (IoT) devices. We propose a proximity-based user authentication method (called PIANO) for access control on such voice-powered IoT devices. PIANO leverages the built-in speaker, microphone, and Bluetooth that voice-powered IoT devices often already have. Specifically, we assume that a user carries a personal voice-powered device (e.g., smartphone, smartwatch, or smartglass), which serves as the user's identity. When another voice-powered IoT device of the user requires authentication, PIANO estimates the distance between the two devices by playing and detecting certain acoustic signals; PIANO grants access if the estimated distance is no larger than a user-selected threshold. We implemented a proof-of-concept prototype of PIANO. Through theoretical and empirical evaluations, we find that PIANO is secure, reliable, personalizable, and efficient.Comment: To appear in ICDCS'1

    Elderly care monitoring system with IoT application

    Get PDF
    Falls among elderly can pose serious consequences such as injury or even fatal ones. Therefore, it is essential that fall are detected early and away to that is by using IoT platform. The authors have been developing a wearable device for elderly monitoring system utilizing accelerometer. The data from accelerometer is connected to an Internet-of-Things (IoT) platform called ThingSpeakTM. Based on IoT platform, elderly patients can be remotely monitored as long as the care providers have good internet access. The paper presents the experimental results of determining the sensitivity and specificity of the accelerometer used in the proposed system. This is the first step for developing an accurate data acquisition for monitoring purposes. Based on the experimental results, the average percentage for sensitivity obtained for this device is 73.3%, while the average for specificity obtained is 89.3%. Both sensitivity and specificity tests shows promising results which indicates that the device only has a fail rate of 26.7% and error rate of 10.7%
    corecore