17 research outputs found

    Action de Groupe SupersinguliÚres et Echange de Clés Post-quantique

    Get PDF
    Alice and Bob want to exchange information and make sure that an eavesdropper will not be able to listen to them, even with a quantum computer.To that aim they use cryptography and in particular a key-exchange protocol. These type of protocols rely on number theory and algebraic geometry. However current protocols are not quantum resistant, which is the reason why new cryptographic tools must be developed. One of these tools rely on isogenies, i.e. homomorphisms between elliptic curves. In this thesis the first contribution is an implementation of an isogeny-based key-exchange protocol resistant against side-channel attacks (timing and power consumption analysis, fault injection). We also generalize this protocol to a larger set of elliptic curves.Alice et Bob souhaitent Ă©changer des informations sans qu’un attaquant, mĂȘme muni d’un ordinateur quantique, puisse les entendre. Pour cela, ils ont recours Ă  la cryptologie et en particulier Ă  un protocole d’échange de clĂ©s. Ces protocoles reposent sur la thĂ©orie des nombres et la gĂ©omĂ©trie algĂ©brique. Cependant les protocoles actuellement utilisĂ©s ne rĂ©sistent pas aux attaques quantiques, c’est pourquoi il est nĂ©cessaire de dĂ©velopper de nouveaux outils cryptographiques. L’un de ces outils repose sur les isogĂ©nies, c’est-Ă -dire des homomorphismes entre des courbes elliptiques. Dans cette thĂšse nous proposons une implĂ©mentation d’un des protocoles d’échange de clĂ©s basĂ© sur les isogĂ©nies qui rĂ©siste aux attaques par canaux auxiliaires (Ă©tude de la durĂ©e d’exĂ©cution, de la consommation de courant et injection de fautes). Nous gĂ©nĂ©ralisons Ă©galement ce protocole Ă  un plus grand ensemble de courbes elliptiques

    Static Analysis of Circuits for Security

    Get PDF
    The purpose of the present work is to deïŹne a methodology to analyze a system description given in VHDL code and test its security properties. In particular the analysis is aimed at ensuring that a malicious user cannot make a circuit output the secret data it contains

    The Design and Analysis of Symmetric Cryptosystems

    Get PDF

    Cryptanalysis, Reverse-Engineering and Design of Symmetric Cryptographic Algorithms

    Get PDF
    In this thesis, I present the research I did with my co-authors on several aspects of symmetric cryptography from May 2013 to December 2016, that is, when I was a PhD student at the university of Luxembourg under the supervision of Alex Biryukov. My research has spanned three different areas of symmetric cryptography. In Part I of this thesis, I present my work on lightweight cryptography. This field of study investigates the cryptographic algorithms that are suitable for very constrained devices with little computing power such as RFID tags and small embedded processors such as those used in sensor networks. Many such algorithms have been proposed recently, as evidenced by the survey I co-authored on this topic. I present this survey along with attacks against three of those algorithms, namely GLUON, PRINCE and TWINE. I also introduce a new lightweight block cipher called SPARX which was designed using a new method to justify its security: the Long Trail Strategy. Part II is devoted to S-Box reverse-engineering, a field of study investigating the methods recovering the hidden structure or the design criteria used to build an S-Box. I co-invented several such methods: a statistical analysis of the differential and linear properties which was applied successfully to the S-Box of the NSA block cipher Skipjack, a structural attack against Feistel networks called the yoyo game and the TU-decomposition. This last technique allowed us to decompose the S-Box of the last Russian standard block cipher and hash function as well as the only known solution to the APN problem, a long-standing open question in mathematics. Finally, Part III presents a unifying view of several fields of symmetric cryptography by interpreting them as purposefully hard. Indeed, several cryptographic algorithms are designed so as to maximize the code size, RAM consumption or time taken by their implementations. By providing a unique framework describing all such design goals, we could design modes of operations for building any symmetric primitive with any form of hardness by combining secure cryptographic building blocks with simple functions with the desired form of hardness called plugs. Alex Biryukov and I also showed that it is possible to build plugs with an asymmetric hardness whereby the knowledge of a secret key allows the privileged user to bypass the hardness of the primitive

    Towards a Theory of Symmetric Encryption

    Get PDF
    Motivée par le commerce et l'industrie, la recherche publique dans le domaine du chiffrement symétrique s'est considérablement développée depuis vingt cinq ans si bien qu'il est maintenant possible d'en faire le bilan. La recherche a tout d'abord progressé de maniÚre empirique. De nombreux algorithmes de chiffrement fondés sur la notion de réseau de substitutions et de permutations ont été proposés, suivis d'attaques dédiées contre eux. Cela a permis de définir des stratégies générales: les méthodes d'attaques différentielles, linéaires et statistiques, et les méthodes génériques fondées sur la notion de boßte noire. En modélisant ces attaques on a trouvé en retour des rÚgles utiles dans la conception d'algorithmes sûrs: la notion combinatoire de multipermutation pour les fonctions élémentaires, le contrÎle de la diffusion par des critÚres géométriques de réseau de calcul, l'étude algébrique de la non-linéarité, ... Enfin, on montre que la sécurité face à un grand nombre de classes d'attaques classiques est assurée grùce à la notion de décorrélation par une preuve formelle. Ces principes sont à l'origine de deux algorithmes particuliers: la fonction CS-Cipher qui permet un chiffrement à haut débit et une sécurité heuristique, et le candidat DFC au processus de standardisation AES, prototype d'algorithme fondé sur la notion de décorrélation

    The Cryptographic Imagination

    Get PDF
    Originally published in 1996. In The Cryptographic Imagination, Shawn Rosenheim uses the writings of Edgar Allan Poe to pose a set of questions pertaining to literary genre, cultural modernity, and technology. Rosenheim argues that Poe's cryptographic writing—his essays on cryptography and the short stories that grew out of them—requires that we rethink the relation of poststructural criticism to Poe's texts and, more generally, reconsider the relation of literature to communication. Cryptography serves not only as a template for the language, character, and themes of much of Poe's late fiction (including his creation, the detective story) but also as a "secret history" of literary modernity itself. "Both postwar fiction and literary criticism," the author writes, "are deeply indebted to the rise of cryptography in World War II." Still more surprising, in Rosenheim's view, Poe is not merely a source for such literary instances of cryptography as the codes in Conan Doyle's "The Dancing-Men" or in Jules Verne, but, through his effect on real cryptographers, Poe's writing influenced the outcome of World War II and the development of the Cold War. However unlikely such ideas sound, The Cryptographic Imagination offers compelling evidence that Poe's cryptographic writing clarifies one important avenue by which the twentieth century called itself into being. "The strength of Rosenheim's work extends to a revisionistic understanding of the entirety of literary history (as a repression of cryptography) and then, in a breathtaking shift of register, interlinks Poe's exercises in cryptography with the hyperreality of the CIA, the Cold War, and the Internet. What enables this extensive range of applications is the stipulated tension Rosenheim discerns in the relationship between the forms of the literary imagination and the condition of its mode of production. Cryptography, in this account, names the technology of literary production—the diacritical relationship between decoding and encoding—that the literary imagination dissimulates as hieroglyphics—the hermeneutic relationship between a sign and its content."—Donald E. Pease, Dartmouth Colleg
    corecore