5,657 research outputs found

    A National Broadband Plan for Our Future: A Customer-Centric Framework

    Get PDF
    Congress has recently charged the Federal Communications Commission to establish a National Broadband Plan. This paper argues that a customer-centric plan, which puts the customer in control of decision-making, will yield the best broadband result for the U.S. The Federal government must establish a market infrastructure that encourages competition, requires transparency of both network providers and application providers, and includes vigorous antitrust enforcement. Competition from wireless broadband is present now and will become far more prevalent shortly, on the basis of current and announced investment plans. Regulators must also make available far more licensed spectrum to ensure this competition is realized. Calls for regulation in the form of mandated unbundling and more unlicensed spectrum are regulatory cul-de-sacs with proven track records of failure. Calls for regulatory control of network provider practices (other than transparency), such as network neutrality, are misguided. Such decisions are best left to customers, who can very well decide for themselves which of the broadband providers offer terms that best suit the customer.Technology and Industry

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Wi-Fi Offload: Tragedy of the Commons or Land of Milk and Honey?

    Full text link
    Fueled by its recent success in provisioning on-site wireless Internet access, Wi-Fi is currently perceived as the best positioned technology for pervasive mobile macro network offloading. However, the broad transitions of multiple collocated operators towards this new paradigm may result in fierce competition for the common unlicensed spectrum at hand. In this light, our paper game-theoretically dissects market convergence scenarios by assessing the competition between providers in terms of network performance, capacity constraints, cost reductions, and revenue prospects. We will closely compare the prospects and strategic positioning of fixed line operators offering Wi-Fi services with respect to competing mobile network operators utilizing unlicensed spectrum. Our results highlight important dependencies upon inter-operator collaboration models, and more importantly, upon the ratio between backhaul and Wi-Fi access bit-rates. Furthermore, our investigation of medium- to long-term convergence scenarios indicates that a rethinking of control measures targeting the large-scale monetization of unlicensed spectrum may be required, as otherwise the used free bands may become subject to tragedy-of-commons type of problems.Comment: Workshop on Spectrum Sharing Strategies for Wireless Broadband Services, IEEE PIMRC'13, to appear 201

    The Case for Liberal Spectrum Licenses: A Technical and Economic Perspective

    Get PDF
    The traditional system of radio spectrum allocation has inefficiently restricted wireless services. Alternatively, liberal licenses ceding de facto spectrum ownership rights yield incentives for operators to maximize airwave value. These authorizations have been widely used for mobile services in the U.S. and internationally, leading to the development of highly productive services and waves of innovation in technology, applications and business models. Serious challenges to the efficacy of such a spectrum regime have arisen, however. Seeing the widespread adoption of such devices as cordless phones and wi-fi radios using bands set aside for unlicensed use, some scholars and policy makers posit that spectrum sharing technologies have become cheap and easy to deploy, mitigating airwave scarcity and, therefore, the utility of exclusive rights. This paper evaluates such claims technically and economically. We demonstrate that spectrum scarcity is alive and well. Costly conflicts over airwave use not only continue, but have intensified with scientific advances that dramatically improve the functionality of wireless devices and so increase demand for spectrum access. Exclusive ownership rights help direct spectrum inputs to where they deliver the highest social gains, making exclusive property rules relatively more socially valuable. Liberal licenses efficiently accommodate rival business models (including those commonly associated with unlicensed spectrum allocations) while mitigating the constraints levied on spectrum use by regulators imposing restrictions in traditional licenses or via use rules and technology standards in unlicensed spectrum allocations.

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin
    • 

    corecore